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Abstract

Caches are crucial building blocks of web services. They keep data close to users and other ser-

vices, reducing request latencies, expensive network traversals, and requests to resource-constrained

backend servers. Today’s web services need high-capacity, high-performance caches for their massive

working set sizes and to meet stringent performance requirements. Flash-based SSDs meet this need

by providing excellent performance and high capacity at low cost. However, caching on flash involves

a fundamental tradeoff. On the one hand, caches aim for low miss ratios by keeping useful objects

in the cache. On the other hand, caches must protect SSDs from write-induced wear-out, which

increases when useful objects are copied forward during garbage collection. Flash caches are often

forced to choose between good cache performance (i.e., low cache miss ratios) and acceptable device

lifespans.

This dissertation describes Nabu, a flash caching framework for static content that unlocks

new positions along the Pareto frontier of the miss ratio/device lifespan tradeoff, enabling more

effective caching at lower cost than existing frameworks. At the foundation of Nabu’s design are

expiration times, which specify an object’s earliest possible eviction time. In particular, Nabu’s

garbage collection procedure uses expiration times in a cost/benefit analysis to choose the best flash

block to erase, balancing write amplification from copying forward useful objects and increased miss

ratios from evictions. Nabu also uses a novel clustering algorithm to group objects together by their

expiration times, increasing the likelihood of low write amplification during garbage collection. Our

evaluation shows that, for a range of CDN traces, Nabu significantly improves the object miss ratios

achievable at a given total write volume compared to the state-of-the-art flash caching framework.

Nabu also achieves better byte miss ratios at lower write volumes at most points along the byte miss

ratio/write volume Pareto frontier.
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Chapter 1

Introduction

Modern web services manage petabytes to exabytes of data, storing, processing, and serving that data

to millions of users. Services face high peak request rates as well as high performance expectations

from users. Services must balance the resource demands with the resource costs of supporting these

workloads. To do so, they rely on complex, layered service architectures that exploit the differing

strengths and price points of a variety of storage technologies.

At a high level, this architecture commonly consists of three tiers within a datacenter: a storage

tier, an application logic tier, and a web server tier (Figure 1.1). The storage tier typically consists

of fleets of hard disk drives (HDDs), whose low cost, durability, and high capacity make it possible to

store the huge volumes of data managed by the service. In the next tier are servers that implement

the service’s application logic. These servers use fast solid-state disks (SSDs) and faster memory

(DRAM) to support low-latency, high-throughput data processing. Finally, the upper tier consists

of web servers that handle client requests to the service. Web servers similarly rely on SSDs and

DRAM, since responding to client requests should be done with low latency and high throughput.

These tiers are supported by caches. Caches are critical for the performance and efficiency of

web services [5]. For a given backing store, e.g., a storage tier database, a cache stores its most

popular data objects and serves them more cheaply or efficiently than the backing store itself could

serve them. Caching can significantly improve user-visible performance and reduce the resources

needed to run a service. For example, Facebook reports order-of-magnitude decreases in user request

latencies through caching, and claims that a single cache server “can replace tens of backend database

servers” [5].

A cache’s ability to make these performance and resource improvements depends largely on
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Media 
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Datacenter

CDN caches
Key-value 

store caches

Computa�on 
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Database
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Disk 
caches
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Figure 1.1: An example web service architecture with categories of caches supporting the service’s
efficiency and performance within the service’s tiers [5, 76]. Disk and database caches support low-
latency access to data in the storage tier. They also shield hard disks from high load. Media and
key-value stores in the application tier store user data that may be processed by internal services, e.g.,
machine learning-based services, or served to users. Computation caches store intermediate results
from processing. Web server tier caches may store very popular media items and user connection
state. Content delivery network (CDN) caches store particularly popular or low-latency data outside
the datacenter, close to densely-populated areas.

how many requests it serves on behalf of its backing store. However, a cache is much smaller

than its backing store, since serving requests cheaply or efficiently is typically a tradeoff for higher

cost per unit of capacity than its backing store. For instance, the cache’s hardware may be more

expensive, as with storage server disk block caches on SSD or DRAM, both of which are significantly

more expensive per gigabyte than HDDs. The cache may also have higher operating expenses; for

instance, content delivery networks (CDNs) are server deployments near densely populated areas,

where electricity and physical space are more expensive than the remote locations where datacenters

are typically located (Figure 1.1).

Given the cache’s size constraints, a primary challenge in caching is to choose the right objects to

store in the cache to serve the most requests. A cache’s effectiveness is typically reported as its miss

ratio (i.e., objects or bytes not served by the cache versus objects or bytes requested). For a given

cache size and workload, the miss ratio depends on the caching algorithm used to determine the

cache’s contents. Caching algorithms leverage object access patterns in workloads to decide which

objects to keep in the cache and which to evict.
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Caching algorithms are continually improving to support lower byte or object miss ratios in a

wide variety of settings. Unfortunately, even the best caching algorithms will achieve poor miss

ratios when the cache is too small for a workload’s working set size, or the size of the set of objects

which are in use at a given time. The working set sizes of modern service workloads can be enormous;

the working set size at individual servers can exceed the cost-effective size of DRAM by an order of

magnitude [5, 45]. At the same time, caching on HDDs often defeats the purpose of a cache in the

first place, since most workloads are backed by HDDs anyway.

The benefit of increasing cache capacity and the prohibitive per-unit-capacity cost of DRAM have

led to increased interest in caching on SSDs. While SSD read/write latencies are around 100µs,

three orders of magnitude higher than DRAM [26], SSDs are around an order of magnitude less

expensive per gigabyte than DRAM. This additional latency over DRAM is often a fraction of the

other latencies involved in serving a request. For instance, one-way latency within a datacenter is

a few hundred microseconds, while wide-area network latencies are around a hundred milliseconds.

SSD read/write latencies are also significantly lower than HDD latencies, which are around ten

milliseconds. SSDs thus have acceptable performance as a caching medium within web services.

Unfortunately, caching workloads exacerbate SSDs’ main limitation, which is their limited en-

durance. SSDs are made up of NAND flash chips. Flash accumulates wear with each write, even-

tually failing when it is so worn it cannot reliably hold data. For instance, the flash underpin-

ning datacenter-grade SSDs is typically rated for a maximum of a few thousand writes per flash

chip [30, 31, 57]. However, caches have high write rates as they continually insert new objects and

evict old objects to attempt to reduce miss ratios. There is thus a tension between reducing miss

ratios and preserving SSD lifespans. The tradeoff between cache effectiveness and acceptable SSD

lifespan is the fundamental challenge of caching on flash.

Flash’s lifespan is affected by the total write volume of a workload relative to the device’s en-

durance rating and capacity. A workload’s write volume is made up of two types of writes: writes

of new data, and re-writes of existing data as part of the process of clearing out other data deleted

by the host, called write amplification.

Write amplification in an SSD is the outcome of two of flash’s physical constraints. First, the

unit of flash erasure, an erase block, is much larger than the unit of flash read/write, a page. An

erase block must be erased as a whole to reclaim capacity from invalid pages in the block, or pages

deleted by the host that have not yet been erased from the device.

The second constraint is that flash must be written sequentially within an erase block. Data

cannot be overwritten; updates to existing data are done out of place. These two physical constraints

3



can result in an erase block with a mix of valid and invalid data. When the block is erased, the valid

data must be copied forward to a new region of flash. Write amplification from copy-forward chips

away at device lifespan by increasing the workload’s total write volume.

Reducing write amplification has been extensively studied for generic storage systems such as

file systems and key-value stores. However, techniques for reducing write amplification for storage

systems leave performance on the table in the flash caching setting [16, 58, 66]. Unlike in storage

systems, applications using caches do not require the cache to retain all data. The cache can evict

cached objects instead of copying them forward when reclaiming capacity. However, evicting to

avoid write amplification comes with a cost: valuable objects may be evicted, potentially causing

high miss ratios in exchange for low write amplification. Furthermore, cache misses cause objects to

be inserted into the cache, increasing write volume. Storage systems are not designed to navigate

the tradeoff between write volume and miss ratios.

Special-purpose flash caching frameworks are used in practice to handle caching on flash [5, 23,

29, 32, 40, 41, 43, 52, 58, 66, 81]. Flash caching frameworks group cached objects into containers

typically sized to cover a full erase block. Frameworks explicitly delete a full container at a time

from the SSD. Deleting a full container means the device does not handle reclaiming capacity from

individual objects, since there are no valid pages in an erase block to copy forward. The framework

instead takes care of copying forward objects that should remain cached before deleting the container.

Many existing flash caching frameworks limit writes to flash by filtering insertions to flash,

deduplicating objects, compressing objects, or otherwise reducing the volume of new writes to

flash [5, 23, 29, 32, 40, 43, 52, 58, 81]. They then use simple caching algorithms on the SSD.

This dissertation is concerned with fully leveraging SSD capacity by implementing more sophisti-

cated algorithms on the SSD itself while minimizing the write volume generated by the flash caching

workload. Other existing flash caching frameworks aim to achieve this goal, but they leave per-

formance on the table: how they encode object value limits how effectively they can make cache

management decisions.

For generic storage systems, prior work observes that grouping pages by invalidation time can

keep write amplification low, if invalidation time can be predicted or known with an oracle [15, 27].

In a flash cache, invalidation time is analogous to the object’s eviction time for a given caching

algorithm [16]. Grouping objects on flash by their eviction time would reduce write amplification by

enabling the cache to erase entire containers with little or no copy-forward. It would also simplify

the task of choosing a container to erase by making it easy to find containers with many objects

ready to be evicted at a given time.
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The challenge is that for non-trivial caching algorithms, an object’s eviction time is difficult to

predict. Algorithms typically choose to keep objects in the cache longer when they receive a hit,

but predicting when objects will be accessed is itself difficult to predict.

We observe that in the flash caching setting it is also useful to know an object’s earliest possible

eviction time, i.e., the time an object would get evicted if it did not get hit again. The earliest

possible eviction time provides a good foundation for making caching decisions in the flash setting.

Objects that get grouped together by earliest possible eviction time can be evicted together if they

do not receive more hits, contributing to low write amplification. The earliest possible eviction time

supports good container erasure and copy-forward decisions. It clearly expresses which objects can

be evicted at a given time, and hence which containers are good candidates for erasure. Finally,

the framework can confidently handle containers with objects with similar earliest possible eviction

times: if a container’s objects expire far in the future, the framework need not consider that container

for erasure until that time. On the other hand, if most of the container’s objects are past their

earliest possible eviction time and have not been accessed again, the framework can erase most of

the container’s objects with confidence that it will likely not negatively impact miss ratios.

This dissertation demonstrates that it is possible to predict earliest possible eviction times for

a useful class of caching algorithms. Furthermore, earliest possible eviction times can provide a

foundation for cache management decisions that significantly reduce total write volume and miss

ratios over state-of-the-art flash caching frameworks.

We demonstrate these points through the design, implementation, and evaluation of Nabu1, a

flash caching framework for static content. Nabu’s key idea is to explicitly assess the write volume

and potential miss ratio impact of each cache management decision it makes. Nabu achieves this by

introducing expiration times, which specify each object’s earliest possible eviction time. Expiration

times express both an object’s value with respect to the potential benefit of keeping the object in

the cache, and its evictability, i.e., whether the object should be evicted at a given time.

Importantly, expiration times supply this information for each object in absolute terms, irre-

spective of the rest of the cache’s contents. Existing flash caching systems express object values in

relative terms; the best objects to evict are the worst objects in the cache [41, 66]. Relative values

make it difficult to evaluate the impact of erasing a container other than the one containing the worst

objects, even if other choices would contribute significantly less to write amplification. By instead

expressing objects’ values and evictabilities in absolute terms, expiration times grant Nabu freedom

to erase any container in the cache. Nabu can thus erase the container that best balances the goals

1The system is named after Nabu, the Mesopotamian god who inscribed people’s fates on clay tablets [49].
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of evicting low-value objects and keeping write amplification low. To achieve this, Nabu implements

a cost/benefit approach to choosing a container to erase, based on expiration times. Nabu’s design

also includes a novel clustering algorithm for grouping objects into containers by their expiration

times. The algorithm strives to create object clusters with small expiration time ranges, to increase

the likelihood that all objects in the container can be evicted together.

Our evaluation on five CDN traces shows that Nabu pushes out the Pareto frontier of the object

miss ratio and write volume tradeoff. For the same write volume, Nabu can achieve up to a 20%

reduction in object miss ratio compared to RIPQ, the state of the art flash caching framework [66].

This translates to significant savings for backend storage systems underlying the cache. Nabu can

achieve the same object miss ratio as RIPQ with up to 30% fewer flash bytes written, which translates

directly to longer flash device lifetimes (or, equivalently, the ability to use cheaper devices for the

same lifetime), without sacrificing miss ratios. Nabu achieves comparable performance on byte miss

ratio to RIPQ.

The contributions of this dissertation include:

• Identifying earliest possible eviction times as a useful basis for making flash caching decisions.

• A technique for predicting an object’s earliest possible eviction time for an important class of

caching algorithms.

• The design and implementation of Nabu, a flash caching framework that demonstrates how ear-

liest possible eviction times can support high-performance flash caching that preserves device

lifespans.

• An evaluation of Nabu in simulation using five CDN traces, showing that Nabu pushes out

the Pareto frontier of object miss ratio and write volume and achieves a comparable byte miss

ratio/write volume tradeoff to the state-of-the-art flash caching framework.
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Chapter 2

Background

2.1 Datacenter storage hierarchies

Web services rely on extensive datacenter storage hierarchies to store and serve data. The storage

hierarchy underpinning a service should meet the capacity and performance needs of the service

at a reasonable cost. Services achieve this by layering persistent storage with caches, strategically

deploying hard disks, SSDs, and memory to achieve capacity, performance, and cost goals.

The foundation of most services is a backing store. This may be a database, filesystem, or blob

store [28, 50, 71]. Backing stores are typically served from hard disk drives (HDDs), which are

inexpensive but are severely constrained by the read/write rates they can serve per terabyte of

capacity [50]. Hard disks also have relatively high read and write latencies, typically in the tens of

milliseconds. A backing store typically includes disk caches on individual nodes, as well as a memory

or SSD-based caches for storing metadata and/or popular blocks [5, 50, 61]. These caches reduce

read/write load to the HDDs and avoid high request latencies for popular blocks.

The data stored by the backing store is processed by datacenter-internal services to enable rich

user-facing services. For instance, photos get resized for viewing in different settings, and social

relationships among users are processed to support content recommendations [28, 68]. Internal

services also generate logs, counters (e.g., for rate limiters and load balancing), tracking data, and

metadata (e.g., indexes) that may need additional processing. Caches are commonly used to store

results of such processing to avoid expensive recomputations, or to enable low-latency access to data

underpinning critical internal services [5, 28, 50, 71, 76].

Web services typically also deploy caches to store popular data as close as possible to users. In
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particular, content delivery networks (CDNs) are located near high concentrations of users. CDNs

store content on behalf an origin datacenter, i.e., a datacenter where the data is durably stored

by the service. In addition to serving data to users with low latency, CDNs help avoid expensive

network traversals to retrieve requested data from the origin datacenter [5, 28, 62, 71].

2.2 Caching

The degree to which a cache meets its goals—e.g., reducing load to backend storage hard disks,

serving content to users with low latency, keeping network costs low—depends on the cache’s ability

to store and serve requested content. This ability is typically expressed as the cache’s object or byte

miss ratio. The object miss ratio is the count of data objects requested that the cache could not

serve, versus the total count of objects requested from the cache. Byte miss ratio is defined similarly.

Each of these two types of miss ratio is important for different parts of a service’s infrastructure.

Object miss ratios tend to matter for backing stores, since each object request typically translates

to a hard disk IO, and hard disk IO per second is severely constrained [5, 50]. Object miss ratios

also affect user-visible performance, since the latency of retrieving a missed object from a backing

store is the result of per-IO delays and does not typically depend on object size. Byte miss ratios

tend to matter when bandwidth or network is constrained or costly, e.g., for CDN misses [5, 62].

Miss ratio is a useful way to measure a cache’s effectiveness because it gives a clear picture of

how the cache impacts downstream users, systems, and services. For instance, if CDN A achieves

an object miss ratio of 10% and CDN B achieves an object miss ratio of 20%, then CDN A reduces

requests to the origin datacenter by half compared to CDN B.

Two factors have an especially big impact on cache effectiveness. One is the caching algorithm

used to manage the cache’s contents. Admission algorithms determine which objects are inserted

into the cache [8, 22, 63]. By restricting what gets inserted into the cache, admission algorithms

reduce objects’ competition for cache space, allowing useful objects to stay in the cache longer.

Eviction algorithms determine which objects should be evicted to make room for new objects [3,

4, 11, 17, 34, 46, 54, 62, 69]. No one algorithm is best for every workload or system. Algorithms

differ in their metadata requirements, CPU overhead, object indexing overhead, and effectiveness in

different conditions, hence the proliferation of algorithms over time.

The other factor affecting cache performance is the size of the cache [5]. Naturally, a larger

cache can hold more objects at the same time than a smaller cache, increasing the likelihood that a

requested object can be found in the cache. A larger cache can thus reduce cache miss ratios without
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changing anything about the caching algorithm. However, storage hardware that achieves the low

latency and high throughput required for caching in most settings is expensive per unit of capacity.

DRAM, for instance, is on the order of $4 per GB [1]. HDDs, on the other hand, are on the order

of $0.06 per GB [79]. Flash costs on the order of $0.10-1 per GB [1, 79]. Though flash sits at an

attractive price point compared to DRAM, it has some critical limitations when it comes to caches

and write-heavy workloads generally. We next describe flash and those limitations in more depth.

2.3 NAND flash-based SSDs

Flash’s excellent performance and low cost per unit of capacity have made it extremely popular in

data center storage hierarchies. However, flash has three limitations: its erase size is far larger than

the write size, it can only be written sequentially, and it has limited endurance. Together, these

three limitations can dramatically shorten flash device lifetimes under certain workloads, including

ones common for traditional caching.

Flash’s first limitation is that the unit of erasure is much larger than the IO size. Erase blocks

are the minimum unit of erasure. An erase block is typically tens to hundreds of megabytes in

size. Each erase block is composed of a group of flash pages, typically 4-16KiB in size. Pages are

the minimum unit of IO. Garbage-collecting invalid pages, i.e., pages with content the application

wishes to erase, requires erasing an entire erase block. Garbage collection causes write amplification

when valid pages coexist with invalid pages in an erase block, since any valid pages in the block

must be copied forward to a new erase block.

Flash’s second limitation is that it must be written sequentially within an erase block. Once

a flash page is written, it cannot be overwritten until its containing block is fully erased. That

is, flash can only be updated out of place: updating a page involves writing a new page on flash,

then invalidating the old page. These out-of-place updates gradually tie up more of the SSD’s free

capacity in invalid pages, which must be garbage-collected.

Conventional SSDs hide out-of-place updates from the host behind a flash translation layer

(FTL). The host reads, writes, and erases data using logical page addresses. The FTL gives the

appearance of a block interface by mapping logical pages to valid physical pages on flash. The FTL

garbage-collects invalid pages by selecting a block to erase, copying-forward and re-mapping valid

pages in the block, and finally erasing the block to make it writeable once more. A more recent

SSD interface, Zoned Namespaces (ZNS), instead exposes append-only zones to the host [10]. Zones

map to one or more erase blocks and are erased in full. The host becomes responsible for garbage-
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collecting unneeded data, but gains control over grouping data on the device and over when and

how garbage collection is carried out.

Regardless of the interface, reclaiming capacity from invalid data can cause significant write

amplification when valid data gets copied forward. Random-write workloads in particular—such as

those generated by caches—can generate excessive write amplification. As random logical pages get

updated, their old physical flash pages get invalidated, resulting in erase blocks with a mix of valid

and invalid pages. When those blocks get erased, the valid pages must be copied forward, causing

write amplification.

Initial data writes and write amplification together aggravate flash’s third limitation, its low

endurance: as flash is written and erased, it accumulates wear until it eventually fails. An SSD can

sustain a certain write rate depending on how long it is expected to be in operation, the device’s

techniques for managing wear (e.g., through overprovisioning flash to replace bad erase blocks, or the

FTL’s wear-leveling of erase blocks), and the underlying flash’s endurance. Flash which stores single

bits per flash cell has the highest endurance, while the endurance of flash storing more bits per cell

decreases with increasing density. For instance, single-level cell (SLC) flash can endure hundreds of

thousands of write/erase cycles, compared to quad-level cell (QLC) flash’s one thousand write/erase

cycles [12, 60, 65].

The endurance of an SSD is often expressed as supported drive writes per day (DWPD) over a

given lifespan (e.g., 10 DWPD for 5 years). The bound on write rate can be computed with the

following equation:

capacity×DWPD÷ seconds/day (2.1)

So, a 1TiB SLC SSD rated for 10 DWPD over 5 years can sustain an average write rate of 121MiB/s.

On the other hand, a 1TiB QLC SSD rated for 0.1 DWPD can only sustain an average write rate

of 1.2MiB/s for a five-year lifespan. Denser flash storing multiple bits per cell is increasingly used

in datacenters because of its low cost per unit of capacity. Unfortunately, workloads moved onto

such high-density flash are often write-rate bound because they are forced to stay within the lower

endurance limit of the flash.
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2.4 Flash Caching Frameworks

Caching workloads can severely stress the limited endurance of flash. New objects are inserted

frequently, and write amplification can be high in näıve cache implementations [23, 66]. However,

within this challenge is an opportunity: the write amplification generated in caches is optional,

unlike in traditional storage applications. A flash cache can completely avoid write amplification

by evicting every object in a block being erased. The catch is that evicting the wrong objects

can increase miss ratios. Higher miss ratios have two consequences. First, higher miss ratios may

result in higher costs throughout a service as requests must be served from slower or more expensive

storage. Second, they may result in more flash writes as missed objects get reinserted into the cache

and cancel out the benefit of lower write amplification. Evicting and reinserting objects results is

another source of write volume called miss-driven write volume (reinsertion write volume) [23]. The

total endurance impact of a caching workload is the sum of new object insertions, write amplification,

and reinsertion write volume.

Flash caching frameworks mediate between applications and SSDs to manage the complex trade-

off between miss ratios and endurance: they attempt to balance low write amplification from avoiding

copy-forwards with low miss ratios and low reinsertion write volume from keeping valuable objects

in the cache [5, 5, 23, 23, 29, 32, 40, 41, 43, 52, 58, 66, 81]. Flash caching frameworks typically group

objects into containers to have full control of write amplification and of how objects are colocated

in erase blocks. A container maps to one or more SSD erase blocks. Containers may be open, i.e.,

accepting new objects, or closed, i.e., no longer writeable. Resource limits typically determine how

many containers can be open at a time. For instance, on conventional SSDs, available DRAM limits

how many containers can be open at a time, since each open container is buffered in DRAM before

it is flushed to flash. Buffering containers gives frameworks control over how objects are physically

grouped together on a conventional device. Containers also allow frameworks to bypass the FTL’s

garbage collection to control write amplification.

On ZNS SSDs, the zoned interface already physically groups data together on the device if it is

written to the same zone, so open containers do not need to be buffered in DRAM first. ZNS SSDs

have a maximum open zone count driven by the device’s on-board battery-backed RAM [10]. If each

container maps to a zone, then the maximum number of open containers is limited by the device’s

open zone count.

All flash caching frameworks implement three cache management policies to control the miss

ratio/endurance tradeoff:
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• The object grouping policy governs how objects are grouped into open containers.

• The container erasure policy governs which container is erased when capacity needs to be

reclaimed.

• The copy-forward policy governs which objects are kept, i.e., copied forward, from a con-

tainer being erased.

The interplay of these policies determines the high-level caching algorithm, i.e., how and when

objects are evicted, as well as the write volume of the framework when caching a particular workload.

For instance, a flash caching framework implementing the FIFO caching algorithm groups objects

into containers based on insertion time. Its container erasure policy erases the container with the

oldest objects by insertion time. Its copy-forward policy is to copy nothing forward.

A flash caching framework implementing FIFO strongly prioritizes low write amplification. How-

ever, miss ratios may be high as a result. reinsertion write volume, and hence total write volume,

may also be high. For this reason, flash caching frameworks including Nabu are designed to imple-

ment more sophisticated caching algorithms [41, 66] (we show a comparison of Nabu, RIPQ [66],

and FIFO in Section 8.2).
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Chapter 3

Design

Nabu is a flash caching framework for static content designed to push out the Pareto frontier of miss

ratios and write volume. In particular, Nabu provides low miss ratios while keeping copy-forward

write volume and reinsertion write volume low (Section 2.4), where copy-forward write volume comes

from objects copied forward from erased blocks and reinsertion write volume comes from objects

evicted, then reinserted to the cache after misses.

The key insight behind Nabu’s design is that assigning expiration times to cached objects provides

a useful foundation for making good flash caching decisions. Expiration times are predictions of the

earliest time an object might be evicted from the cache under a caching algorithm. Expiration times

express an object’s anticipated value, or the degree to which it is useful to keep the object in the

cache, since an expiration time predicts how much longer the algorithm would keep the object based

on its value. Expiration times also clearly express an object’s evictability, or whether the object can

be evicted at a given time.

Nabu leverages expiration times to design policies that quantify the write amplification and/or

potential miss ratio impact of each choice and choose the best action accordingly. Since expiration

times express an object’s anticipated value and evictability in absolute terms, without requiring

expensive comparisons among objects, Nabu can quantify and weigh these impacts. Nabu also

uses expiration times to support performance tuning. By adjusting a small number of parameters

controlling how expiration times are computed and used in copy-forward decisions, system designers

can prioritize low miss ratios or low write amplification (Section 4.1.1).
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Figure 3.1: Nabu system diagram. Red circles are objects; the solid black star in the upper left
indicates object insertion, while the empty star in the lower left indicates eviction. Orange diamonds
indicate the expiry function and Nabu’s cache management policies. Rectangles are containers;
open containers are green, closed containers are blue, and scratch containers are grey. On insertion
(solid black star), an object is assigned an expiration time (Section 3.2). The object is passed to
the grouping policy, which places it into an open container based on its assigned expiration time
(Section 3.3). When an open container becomes full, it is closed. A new container is initialized
from scratch space containers (Section 3.3). If closing the container causes available scratch space
to fall below a threshold, the container erasure policy selects a container to erase (Section 3.4). The
copy-forward policy determines if any objects should be copied forward; those objects are passed to
the expiry function to be processed (Section 3.5). Otherwise they are evicted (empty star). The
container is erased and becomes scratch space.

3.1 High-level Overview

Figure 3.1 shows Nabu’s high-level functionality. When an object enters Nabu, Nabu computes

its expiration time, the earliest time the object will be evicted. The object’s expiration time is

recomputed if the object gets a hit. Expiration times are computed using a caching algorithm that

evicts objects in a predictable way in the absence of hits (Section 3.2). Expiration times are the

foundation for Nabu’s three flash caching policies.

Nabu’s grouping policy groups incoming objects (i.e., new and copied-forward objects) into open

containers (Section 3.3). The grouping policy’s goal is to reduce copy-forward write volume by

grouping together objects that are likely to be evicted at the same time. Nabu’s grouping algorithm

groups incoming objects by their expiration times.

When the cache is full, Nabu’s container erasure policy frees capacity for new objects (Sec-

tion 3.4). The container erasure policy’s goal is to find a closed container to erase that will best

balance low copy-forward write volume and the miss ratio benefit of evicting objects from the cache
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that are unlikely to get hit soon. By aggregating up-to-date object-level information based on expi-

ration times that quantifies this tradeoff, Nabu finds the container that best balances the benefit of

erasing low-quality bytes with the cost of copying unexpired objects forward.

Once a container is chosen to erase, Nabu’s copy-forward policy copies forward any unexpired

objects into new containers, and evicts objects whose expiration times have passed (Section 3.5).

3.2 Expiration Times

Nabu’s three policies are underpinned by expiration times, which express each object’s earliest

possible eviction time. In this section we detail why Nabu uses expiration times instead of scores

used in classical caching algorithms and how expiration times are assigned to objects.

3.2.1 Scores are inadequate for flash caching.

Useful caching algorithms such as Hyperbolic and GDSF assign scores to objects and use them as

a basis for eviction decisions [11, 17]. Scores are values assigned to objects that are used to rank

objects relative to one another. A score does not encode the absolute value of an object in a way

that enables reasoning about whether to evict an object in isolation, i.e., without comparisons to

other objects’ scores. Scores fall short in the flash caching setting when considering the decisions

that cache management policies need to make.

To make this discussion more concrete, we describe the Hyperbolic algorithm. Hyperbolic assigns

a score to an object o with the following scoring function:

o.n

tnow − o.tinsertion × o.s
(3.1)

where o.n is the object’s hit count, tnow − o.tinsertion its insertion time, and o.s is the object’s size.

Hyperbolic is a volatile score: the score changes as the object ages. Hyperbolic selects a sample of

cached objects, ranks them, and evicts the worst of the sample. Hyperbolic’s score decays over time

so that older objects tend to rank lower than newer objects when sampled.

Scores fall short because they cannot convey the evictability of an object. That is, one object’s

score on its own cannot be used to decide whether to evict an object; the object must be compared

to others. This limitation is problematic in a couple of ways. First, it constrains the order in which

containers can be erased. When a container needs to be erased, scores offer a way to identify the

lowest-value object in the cache, and hence identify a candidate container for erasure. However, the
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container with the cache’s worst object may contain other objects that should be copied forward.

From a write amplification perspective, the container with the worst object may be a bad erasure

candidate [80]. However, because there are only “better” or “worse” objects relative to one another,

it is not clear how to assess the potential effect on miss ratio of evicting objects that are not the

worst object in the cache. Scores are thus not a good basis for making container erasure decisions.

Second, because scores do not express evictability, they impact the cache’s ability to make good

copy-forward decisions. The copy-forward policy is a means of making up for bad object groupings.

This is necessary because the grouping policy is best-effort: it cannot always group similar objects

together. Flash caches have a limited number of open containers available at a given time, making

it difficult to cleanly separate incoming objects when their values vary widely [15]. Furthermore,

once objects have been grouped into a container, their values may evolve differently as some objects

are accessed while others are not. As a result, a container may end up with dissimilar objects.

A consequence of best-effort grouping is that a container with n objects, one of which is the

cache’s lowest-scoring object, does not necessarily contain the next n − 1 lowest-scoring objects.

Using scores to identify which of those n− 1 objects should be evicted is not straightforward, since

scores are only meaningful relative to the scores of other objects in the cache. Many flash caching

frameworks simply do not copy objects forward if they were not accessed since insertion [5, 41, 66].

Unfortunately, this makes it difficult to keep valuable objects in the cache in the face of potentially

poor grouping decisions.

A strawman technique to make a score meaningful on its own is to impose a threshold that

separates high- and low-value objects. For instance, for volatile scores like Hyperbolic, objects can

be repeatedly evaluated. When an object’s score falls below the threshold, it is no longer valuable

and can be evicted. For static scores like GDSF, which do not change unless an object is accessed,

the cache can maintain a ranking of objects and use the nth percentile score as the threshold.

Unfortunately, the cost of this technique is likely too high to be practical given that for many

workloads, a high-capacity cache may contain tens to hundreds of millions of objects [5, 66]. If using

volatile scores, those scores need to be recomputed often so they are up-to-date when evaluating

containers for erasure and when making copy-forward decisions. If using static scores, objects need to

be ranked, likely in a priority queue, which has O(log n) time complexity for insertions, updates (on

hits), and deletions (on evictions). It would be interesting to evaluate efficient implementations of

cost-based algorithms, such as GD-Wheel [42], or approximations of priority queues for inexpensively

ranking and thresholding objects.
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3.2.2 Earliest eviction times support good flash caching decisions.

Knowing at insertion time when an object will be evicted by a caching algorithm would address the

issues with scores in the flash caching context [16, 27]. Grouping objects by their eviction time would

simplify deciding which container to erase and would enable better copy-forward decisions. However,

no accurate prediction techniques are known for state-of-the-art caching algorithms. Eviction times

are hard to predict at insertion time because algorithms dynamically decide to retain objects for

longer based on access patterns, which themselves are hard to predict.

Although we cannot predict eviction times, we observe that, for a useful class of caching algo-

rithms, we can predict the earliest time the algorithm would evict the object. In such algorithms,

an object’s score decays at a predictable rate over time until the object is evicted, unless the object

gets additional hits. For instance, Hyperbolic initially assigns objects a high score that decays with

the time since the object’s insertion, with the decay rate determined by the object’s properties such

as its size and access count [11]. The function used to compute an object’s score can be combined

with a score threshold to yield a prediction of the object’s earliest possible eviction time.

The earliest possible eviction time of an object is useful in the flash caching setting. First, it is

a good basis for grouping decisions. Many objects will not be hit after insertion, and all objects will

not be hit after their last access before eviction. The earliest possible eviction times thus are accurate

eviction time predictions for many objects. Second, earliest possible eviction times are useful for

the container erasure policy. The earliest possible eviction time conveys an object’s usefulness in

absolute terms, independent of the rest of the cache’s contents. Earliest eviction times make it easy

to examine a container’s objects to determine both the write amplification impact and the potential

miss ratio impact of erasing that container. This in turn makes it easy to compare containers to find

the one to erase that will best balance the goals of keeping miss ratios low and keeping copy-forward

write volume low. Third, at copy-forward time, earliest possible eviction times help make up for

best-effort grouping decisions. An object’s earliest possible eviction time clearly indicates whether

it should be evicted or not, so the framework does not need to guess as to whether to evict an object

in a container being erased.

3.2.3 Computing expiration times

Nabu computes an object’s earliest possible eviction time, or expiration time, with an expiry function.

Expiration times are expressed in terms of logical timesteps (i.e., number of requests). The intuition

behind an expiration time is that it captures the time at which an object’s volatile score will fall
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below a threshold, at which time they are low-value enough to be evicted.

Our Nabu implementation comes with an expiry function based loosely on the Hyperbolic scoring

function [11]. Whereas Hyperbolic penalizes objects with the time since the object’s insertion,

Nabu’s expiry function uses the time since the object’s last access. Using the time since insertion

helps Hyperbolic avoid evicting new objects which are sampled for eviction by assigning them an

initially high score [11]. Nabu does not evaluate objects for eviction in this manner; it is instead

interested in keeping objects which have been recently hit, so penalizing objects which were accessed

farther in the past is more appropriate.

Nabu’s performance depends on the score threshold thresh > 0 used in the expiry function to

compute each object’s expiration time. Decreasing the score threshold keeps objects in the cache

longer. A lower (laxer) threshold results in an object getting a later expiration time than it would

with a higher (stricter) threshold, all else being equal. A lower threshold may reduce the miss ratio

by keeping certain objects in the cache longer, but it may come at the cost of high copy-forward write

volume. Setting a higher threshold typically results in the opposite tradeoff: though miss ratios may

increase, overall write volume may decrease. However, the interplay between write volume and miss

ratio is complex because of reinsertion write volume—a higher miss ratio can cancel out the benefit

of lower write amplification, as missed objects get rewritten into the cache.

The expiry function is also parameterized by a lifetime cap lcap ≥ 0, which caps the maximum

expiration time an object can be assigned (i.e., lifetime is the expiration time minus the current

time). The lcap ensures objects are evicted from the cache within a reasonable time. When the

score threshold is low, expiration times can grow far beyond the maximum time observed between

requests for the same object in the workload (let alone, say, the 95th percentile of inter-request

times). Setting a cap on the lifetime avoids keeping objects around for so long they are unlikely to

contribute to more hits.

Nabu’s expiry function can tune how it accounts for object size in an object’s expiration time,

allowing Nabu to achieve performance on a spectrum between optimizing for bytes and optimizing for

objects. The size penalty, szmod, is an exponent on object size between 0 and 1. Setting szmod = 0,

i.e., treating all objects the same regardless of size, lets Nabu achieve the best byte miss ratios.

Setting szmod > 0 increases the penalty applied to size. With szmod = 1, the expiry function fully

accounts for size, penalizing larger objects and achieving the best object miss ratios.
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Figure 3.2: A schematic of a cluster. The dashed arrow is a timeline representing expiration times.
Solid circles are expiration times of objects in the cluster. The lower and upper bounds of the
cluster are marked. The empty triangles indicate ϕ away from the bounds. Any object added to the
cluster will become a new upper/lower bound if its expiration time falls within the region between
an upper/lower bound and a triangle marking ϕ. Objects may be added to a cluster even if their
expiration times fall outside of ϕ, but they will not affect the bounds.

The full equation for calculating an object’s expiration time is thus:

min(o.tn +
o.n

o.sszmod × thresh
, lcap) (3.2)

where o.n is the object’s access count, o.tn−1 is the object’s last access time, o.sszmod is the object’s

size adjusted by the size penalty, thresh is the score threshold, and lcap is the lifetime cap.

Section 4.6 evaluates the impact of these parameters on Nabu’s performance. Section 4.6 also

describes how a system using Nabu could tune these parameters in practice.

3.3 Grouping Policy

After Nabu calculates an expiration time for an object, Nabu must select a container to group it into.

The grouping policy’s high-level goal is to keep copy-forward write volume low by grouping together

objects with similar expected expiration times. It achieves this by treating each open container as a

cluster of objects, then using online clustering to find the best container for each object based on its

expiration time. In addition to selecting the best open container for each object, the grouping policy

also manages the open containers themselves, deciding when to close open containers and when to

create a new cluster with an empty open container.

Clustering is lightweight because it can create groups of similar objects without tracking the

distribution of object expiration times. Nabu’s clustering algorithm is inspired by an online algorithm

that aims to minimize the diameters of clusters (Extend closed clusters in Csirik et al. [21]).

The diameter of a cluster is the range of object values in the cluster (where values are expiration

times in Nabu). This objective is a good fit for Nabu’s grouping policy: a small diameter means the

expiration times of objects in the container are close to one another, satisfying the goal of grouping
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objects together that are likely to be evicted around the same time (subject to the constraints on

grouping quality described in Section 3.2.1). Nabu modifies the algorithm for flash: it supports a

maximum number of open clusters (containers), and it modifies how distances among expiration

times are calculated to account for their time-dependent nature.

At a high level, Nabu’s clustering algorithm groups an incoming object into a container c if

Dist(c,o), the distance from the object’s expiration time to the upper/lower bound of the container,

is smaller than ϕ (Figure 3.2). The upper bound of a container is defined by the maximum expiration

time added to the container under the condition of Dist(c,o) < ϕ at the time the object was added.

The lower bound is defined similarly. If no such container exists and there is a free container (i.e.,

an open, but empty, container), the object is used to initialize that container as a cluster. If there

are no free containers, the object is placed in the container to which it is closest. In this case, the

bounds of the container are not updated since doing so would expand the container bounds by more

than ϕ, leading to worse groupings. The algorithm is detailed in Figure 8.2.

An alternative to making a sub-optimal grouping for an object is to close a container and open a

new one for that object. However, this strategy will waste cache capacity if the open containers are

not nearly full. Furthermore, there is no guarantee that the object being grouped is not an outlier

with a very high or very low expiration time; opening a new container for an outlier object would

result in worse groupings later.

Nabu’s clustering algorithm makes a best-effort attempt to create tight clusters of objects with

small expiration time diameters. Since containers are a precious resource, it is important to only

initialize a cluster for regions of the expiration time space where there is not already a container.

The ϕ parameter ensures a free container is used for a cluster only when the object is a poor fit for

all existing containers.

3.3.1 Handling expiration time drift

Nabu’s clustering algorithm handles an additional challenge of the flash caching setting: as time

moves forward, expiration times gradually drift into the past. A container whose bounds have

drifted into the past as time moves forward will become increasingly difficult to fill, since incoming

objects have an expiration time in the future. With no mechanism for adding new objects to such

containers, open containers may remain open, with one or more stale objects, forever. Nabu handles

such clusters by scaling down distances calculated to a cluster if the container’s upper bound is in

the past. It does so proportionally to how far the container’s upper bound is in the past.
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Using a distance scaling factor proportional to the container’s age avoids low-quality groupings

until necessary. For instance, if a container’s upper bound only recently drifted into the past, it is

preferable to delay closing the container to wait for incoming objects with expiration times closer

to the cluster than to add objects with very distant expiration times. However, if the container’s

upper bound drifted into the past long ago, many of the container’s objects are likely expired. Nabu

should thus attempt to close the container as quickly as possible and consider it for erasure.

3.3.2 Closing open containers

Nabu closes an open container when that container is the best fit for an object but does not have

space for it. Though this wastes some of the container’s capacity if objects do not fit neatly into

containers, in practice the wasted capacity is negligible compared to the container’s size. After the

container is closed, the object is reevaluated to determine if it should be added to another open

container, or if the object should initialize the free cluster that replaced the closed container.

3.4 Container Erasure

Nabu periodically needs to reclaim capacity by evicting expired objects. Capacity is reclaimed by

erasing a closed container; any unexpired objects in an erased container are kept in the cache by

copying them forward into an open container. Nabu initiates container erasure when the cache’s

available scratch space drops below a certain threshold. Scratch space consists of containers that

have been erased and are available to replace open containers that get closed.

The container erasure policy’s high-level goal is to balance evicting low-quality objects in the

cache and minimizing write amplification. Expiration times are key to achieving this goal: they allow

Nabu to precisely compute the cost of erasing a container in terms of the write amplification that

would be generated by erasing that container. They also express a notion of object staleness, i.e.,

how long ago the object expired and thus how long ago a caching algorithm might have evicted the

object. Staleness allows Nabu to quantify the benefit of erasing the container, where the cache sees

greater benefit from evicting more stale bytes. The container erasure policy ranks closed containers

based on this cost/benefit analysis and erases the container with the greatest benefit.

The benefit of erasing a particular container is brec, the number of bytes reclaimed if the container

is erased now. The reclamation benefit is scaled by st, a measure of the container’s expired bytes’

staleness. We compute st as the average time since each byte expired:
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st =
Σk

i=1(tnow − oi.exp)× oi.s

Σk
i=1oi.s

where oi is the ith expired object in the container, oi.exp is its expiration time, and oi.s is its

size.

The cost of erasing a container is bunexp, i.e., the write amplification in bytes that would be

generated from copying forward the unexpired objects in the container. The benefit to erasing each

container is then:

brec × st

bunexp

If multiple containers need to be erased, Nabu erases containers in order of descending benefit.

Scaling the bytes reclaimed by the staleness of the bytes encourages Nabu to erase containers

with very low-quality bytes, even if the write amplification impact would be worse than erasing

other containers. Similarly, given two containers which, if erased, would generate the same amount

of write amplification, Nabu will choose the one with more-stale bytes. Clearing low-quality bytes

from the cache frees cache capacity for less-stale objects to remain cached for longer, potentially

allowing them to accrue more hits.

The benefit of using expiration times in container erasures is apparent: determining the number

of bytes reclaimable from a container is simply a matter of counting the number of bytes belonging to

objects with expiration times in the past. The calculation of a container’s staleness is similarly simple

and computationally cheap. At the same time, this container erasure strategy requires calculations

based on the expiration time and size of every cached object. Two factors make this practical.

First, the calculations can be parallelized, since each container is evaluated independently of others

until containers get ranked. Second, the analysis need not be repeated for every container erasure.

Containers at the bottom of the ranking tend not to significantly change rank between container

erasures. The ranking can therefore be recycled for a few container erasure cycles before it should be

refreshed with the most up-to-date cost/benefit analysis [48]. We found for our traces that recycling

the ranking 10 times had negligible impact on cache performance (i.e., write volume or miss ration)

compared to the exact method, but conferred a significant speedup (up to 2×) in simulation runtime.
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3.5 Copy-Forward Policy

Nabu’s copy-forward policy is designed to rescue valuable objects from containers selected for erasure.

Such objects may be in a container being erased because they were accessed after insertion, while

colocated objects were not. Alternatively, objects with widely varying expiration times may have

been initially grouped into the same container because there were no better containers available when

the objects were written. Copying such objects forward is a lazy update of the object’s position to

a container with objects more similar to itself.

Expiration times makes it easy to identify objects which a caching algorithm would most likely

keep, so that they can be copied forward. Expired objects have a low anticipated value and should

be evicted, since Nabu predicted that the object would have been evicted by the caching algorithm,

while those objects which are unexpired should be copied forward.

Some workloads benefit from copy-forward filtering, where objects which have not yet expired

but have little time remaining before expiration are evicted. In those workloads, copy-forward

filtering can reduce write amplification without significantly impacting miss ratios (Section 4.6).

Nabu accepts a copy-forward filter parameter that specifies a minimum remaining lifetime for objects

to be copied forward. Any object in a container being erased that has less than the minimum lifetime

remaining before it expires is evicted.
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Chapter 4

Evaluation

We evaluate Nabu to answer the following questions:

• How does Nabu compare with RIPQ, the state of the art flash caching system (Section 4.4)?

• How do types of write volume contribute to total write volume in Nabu (Section 4.5)?

• How do Nabu’s parameters impact its performance (Section 4.6)?

4.1 Implementations

4.1.1 Nabu Implementation

We implement a Nabu simulator, as well as a prototype of Nabu. The simulator is implemented

in approximately 5K lines of C++. The prototype is integrated into the CacheLib caching frame-

work [5]; unfortunately, at the time of writing, the prototype was not complete, so we do not show

results for it here.

We simulate Nabu as if it were on a conventional SSD exposing a block interface. That is, objects

are buffered in open containers in DRAM and flushed to the SSD when they are full (Section 3.3).

Flash capacity consists of closed containers and scratch space. Scratch space is container-sized

regions of erased flash to which open containers can immediately be flushed. We allocate scratch

space equivalent to twice the number of open containers. For instance, for a 1024GiB SSD with

1GiB containers, if there are 8 open containers, the total flash capacity available for storing cached

objects is 1008GiB. Containers are erased when the scratch space needs to be replenished (i.e., the

scratch container count falls below 2× the open container count). For efficiency, our implementation
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Parameter Purpose Where used?
thresh Score threshold for tuning miss ratio/write volume Expiry function (Section 3.2.3)
szmod Modifies object size penalty to tune write volume Expiry function (Section 3.2.3)
lcap Caps maximum object lifetime Expiry function (Section 3.2.3)
ϕ Controls opening new containers Grouping policy (Section 3.3)
cffilter Preemptively evicts objects nearing expiration Copy-forward policy (Section 3.5)

Figure 4.1: Nabu parameters and where they are used.

ranks containers for erasure and recycles this ranking 10 times before recomputing it, as described

in Section 3.4.

Nabu parameters Nabu-specific parameters are summarized in Figure 4.1. Section 4.6 evaluates

the impact of these parameters on Nabu’s performance.

Metadata Overhead Nabu maintains metadata to compute expiration times and for container

erasure. For objects, it maintains a total of 24 bytes, allocated as follows:

• 8 byte identifier used as a key

• 4 byte object size

• 4 byte last read time

• 2 byte hit count

• 2 byte container identifier

• 4 byte offset in container, needed to read object

Nabu also uses 4 bytes per container for the container’s size (i.e., capacity consumed by objects).

For a cache with 50 million objects, this is around 1.5 GiB, comparable to other flash caching

frameworks [5, 66].

4.1.2 Baseline Implementation: RIPQ

RIPQ is the state-of-the-art flash caching framework [66]. RIPQ’s grouping, container erasure,

and copy-forward policies are designed to approximate a priority queue. RIPQ supports caching

algorithms that can be implemented with priority queues, such as GDSF [17] and SLRU [34]. RIPQ

is described in more detail in Section 5.2.1.

We implement a RIPQ simulator in approximately 3K lines of C++. All RIPQ metadata is

stored in DRAM for fairness, i.e., to avoid consuming cache capacity with metadata, since Nabu’s
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current design stores its metadata in DRAM. As with Nabu, RIPQ is implemented as if it were

stored on a conventional SSD (the version of RIPQ in the paper is implemented in this way, as well).

RIPQ also requires scratch space for flushing containers from DRAM to the device; the scratch space

is allocated and managed in the same way as in Nabu.

RIPQ parameters RIPQ’s θ parameter filters copy-forwards that have a sub-threshold priority.

RIPQ supports customizable scoring functions. We use the GDSF scoring function [17] to optimize

for low object miss ratio, and SLRU with 2, 3, and 4 segments [34] to optimize for low byte miss

ratio, as presented in the paper [66]. For GDSF, which uses RIPQ’s absolute priority interface, we

set the number of priority buckets to 100, which achieved good performance. Similarly, setting the

maximum access count to 3 achieved the best performance. Both settings align with observations

in the RIPQ paper.

By default, RIPQ erases the tail container of the priority queue. Our RIPQ implementation

includes a production optimization that avoids excessive copy-forward write volume by skipping

tail containers with too many bytes to copy forward [80]. If the tail container’s copy-forward ratio

(ratio of bytes to copy forward to container size) is higher than a threshold, RIPQ will not erase the

container. The container will instead be promoted to the head of the queue, and all objects’ virtual

block pointers will be erased. RIPQ will continue promoting tail containers until one is found whose

copy-forward ratio is below the threshold.

4.1.3 Common Parameters

Both Nabu and RIPQ are parameterized by the number of open containers (Figure 4.1). Our

evaluation uses 8 open containers, which showed good results across systems and traces. We explore

the effect of using more/fewer open containers in Nabu in the sensitivity analysis (Section 4.6).

4.2 Configuration

All simulations are run with a DRAM cache in front of the flash cache, to simulate a common

production setup. The DRAM cache is 1% of the simulated device size and uses the LRU eviction

policy. Our DRAM cache borrows from Kangaroo’s memory-only cache simulator [44].

Measurement details We take measurements after a warmup period of 50% of the trace. Each

run generates at least 40× the device capacity in writes (including warmup and measurement peri-
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Trace Trace1 Trace2 Trace3 Trace4 Trace5
Duration (wall-clock) 9 days 9 days 9 days 4 days 0.5 days
# Requests (total) 1.8B 2.3B 2B 2.6B 1B
# Requests (filtered) 1.2B 1.5B 1.5B 2.6B 1B
Unique objs. requested 102M 88.2M 85.1M 102.3M 14.6M
Total bytes requested 637.7TiB 525.3TiB 574.6TiB 4.9PiB 3.8PiB
Unique bytes requested 57.1TiB 29.9TiB 40.8TiB 195.1TiB 55.6TiB
Obj. size (mean) 603KiB 339KiB 515KiB 2MiB 4MiB
Obj. size (max) 1GiB 1GiB 1GiB 2MiB 4MiB

Figure 4.2: Properties of traces used in evaluation. Except for # Requests (total), all numbers
shown are for objects requested that are filtered, i.e.,larger than 2KiB and smaller than 1GiB (the
container size).

ods). Object miss ratio is calculated as the number of objects which were requested but were not

found in the cache, divided by the total objects requested. Byte miss ratio is defined similarly. Total

write volume is measured as the number of containers flushed to the SSD times the container size.

4.3 Workloads

We evaluate Nabu and the baseline systems on CDN traces. CDN traces consist of read requests

for immutable objects. Three traces, Trace1, Trace2, and Trace3, contain variable-sized objects.

Neither Nabu nor RIPQ are designed to handle very small objects, so we do not cache requests

smaller than 2KiB. A typical flash cache can hold billions of small objects; the associated overhead

of indexing that many objects is prohibitive. Small objects are handled by special-purpose small

object caches in practice [5, 45].

Trace4 and Trace5 contain fixed-size objects of 2MiB and 4MiB, respectively. Trace properties

are summarized in Figure 4.2.

4.4 Nabu pushes out the miss ratio/write volume Pareto

frontier for object misses.

Figures 4.4 and 4.5 show the best miss ratio/write volume tradeoffs achievable by Nabu and RIPQ.

The frontier is constructed from the best configurations in each system. That is, the frontier points

represent configurations where no other configuration has a lower write volume at a given miss ratio.

For RIPQ, we sweep the full range of the θ parameter and the full range of the copy-forward ratio

(i.e., 0-1, inclusive, for each) (Section 4.1.2). We sweep these parameters for GDSF, as well as SLRU

with 2-4 segments. For parameters to which Nabu is sensitive—the object lifetime cap, lcap; the
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Trace WV (TiB) Object MR Byte MR
Trace1 74.8 14.8% 21.4%
Trace2 21.3 7.7% 6.9%
Trace3 36.1 7.8% 11.6%
Trace4 480.9 18.0% –
Trace5 206.3 9.6% –

Figure 4.3: Absolute values used to compute percent differences from RIPQ minimums in Figures 4.4
and 4.5. WV is the write volume in terabytes; MR is miss ratio.

score threshold, thresh; the size penalty, szmod; and the copy-forward filter, cffilter—we sweep

reasonable ranges of those parameters until performance plateaus. For other parameters, e.g., the

cluster range value ϕ, we choose a value that works well and use it in all configurations. Parameter

sensitivity is discussed in detail in Section 4.6.

Certain trace and system combinations have a frontier constructed of very few points, e.g.,

Trace4 in RIPQ (Figure 4.4d). In these cases, there were a few specific parameter combinations that

outperformed all other configurations. Other plots show apparent discontiguities in the frontier;

e.g., for Trace1 in Nabu, there is a sharp increase in write volume around -5% miss ratio difference

(Figure 4.4a). Such discontiguities are typically a result of two different configurations with different

behaviors contributed to the frontier.

To simplify comparing Nabu’s performance to RIPQ’s, miss ratios are expressed as the percent

difference from RIPQ’s minimum miss ratio, i.e., (MR − min(MRRIPQ)) ÷ min(MRRIPQ). Write

volumes are similarly shown relative to RIPQ’s lowest write volume. The absolute values used to

calculate the percent differences are listed in Figure 4.3.

We show the results for a 1TiB cache; results for a 2TiB cache are comparable and shown in

Section 8.3.

4.4.1 Object miss ratio

The results show that both systems are subject to the miss ratio/write volume tradeoff inherent in

flash caching. As miss ratios decrease, write volume tends to increase.

However, for object miss ratios, Nabu makes the better tradeoff: Nabu pushes out the Pareto

frontier of object miss ratio and write volume from what was previously achievable with RIPQ

(Figure 4.4). At the lowest common write volume between the two systems, Nabu achieves object

miss ratios up to 20% lower than RIPQ’s (e.g., Figure 4.4c at 0% difference in bytes written). Nabu’s

minimum object miss ratios are up to 12% lower than RIPQ’s (e.g., the leftmost points for each

framework in Figures 4.4a, 4.4b and 4.4c). In both frameworks, write volume tends to spike quickly
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(a) Trace1 object miss ratio (b) Trace2 object miss ratio

(c) Trace3 object miss ratio

(d) Trace4 object miss ratio (e) Trace5 object miss ratio

Figure 4.4: Object miss ratio vs write volume for Nabu and RIPQ for a 1TiB cache. Nabu pushes
out the Pareto frontier of object miss ratio/write volume.

at its lowest miss ratios; a small miss ratio increase can be traded off for a large decrease in write

volume. Nabu’s write volume is generally significantly lower than RIPQ’s at the same miss ratio,

with reductions of up to up to 30% (e.g., Figure 4.4e at 2% miss ratio difference).
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(a) Trace1 byte miss ratio (b) Trace2 byte miss ratio

(c) Trace3 byte miss ratio

Figure 4.5: Byte miss ratio vs write volume Pareto frontier for Nabu and RIPQ for a 1TiB cache.
Trace4 and Trace5 are not shown; byte and object miss ratio for those traces are equivalent because
all objects are the same size. Nabu is at or near the Pareto frontier of byte miss ratio and write
volume.

4.4.2 Byte miss ratio

In terms of byte miss ratio, Nabu typically achieves comparable or better performance than RIPQ

(Figure 4.5). RIPQ achieves lower write volumes for some miss ratios—and slightly better minimum

miss ratios—than Nabu in the variable-sized object traces, i.e., Trace1, Trace2, and Trace3. These

traces have a high proportion of objects that only get accessed once, and SLRU variants are especially

effective at evicting such objects early (here we use SLRU with 2, 3, and 4 segments [34, 66]). Future

work will investigate how to improve Nabu’s performance for byte miss ratio for such traces.
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4.4.3 Discussion

Nabu’s better object miss ratio versus write volume tradeoff compared to RIPQ is due to several

factors. One is Nabu’s flexible container erasure strategy, which allows Nabu to achieve low write

volume without compromising object miss ratios. Nabu balances the goal of evicting objects unlikely

to contribute to hits with the goal of keeping write volume low at each container erasure. RIPQ, on

the other hand, is constrained with regard to the order it can erase containers; it erases containers

from the tail of the queue. RIPQ can be optimized to skip erasing containers that will generate

high copy-forward write volume [80] (4.1.2). This optimization significantly reduces copy-forward

write volume and hence total write volume in both our simulations and Facebook’s production

deployments of RIPQ [80]. However, because skipped containers get promoted to the head of the

queue and RIPQ does not explicitly track object values, this strategy can result in worse miss ratios

as low-value objects are kept in the cache longer. We observed increasingly worse object miss ratios

in our simulations as RIPQ’s copy-forward ratio threshold was decreased (i.e., it more aggressively

skips containers).

A factor contributing to Nabu’s low object miss ratios may be that Nabu’s expiry function

may overestimate expiration times for objects valued highly by the caching algorithm. When the

algorithm optimizes for object miss ratio, this means smaller objects are retained for longer and

Nabu aggressively clears larger objects from the cache. This behavior has little penalty, even if

those objects do not end up accruing hits, because small objects do not add much to write volume if

copied forward and take up little excess cache capacity. In fact, Nabu is rewarded, because keeping

smaller objects for longer lets it achieve lower object miss ratios. On the other hand, when the

algorithm optimizes for byte miss ratio, it treats large and small objects the same. Nabu’s expiry

function may then overestimate expiration times for large objects and retain them for too long. Large

objects naturally contribute more to copy-forward write volume and occupy more cache capacity,

making it difficult for Nabu to keep write volume and byte miss ratios low. This hypothesis is

supported by the fact that Nabu’s best runs from an object miss ratio perspective typically get

significantly worse byte miss ratios than RIPQ’s best runs for object miss ratio.

This property of Nabu may not be the whole explanation for its modest performance in the

byte miss ratio/write volume tradeoff. Nabu outperforms RIPQ for Trace4 and Trace5, which have

same-size objects, so overvaluing small objects may not fully explain the observed behavior. The

traces where Nabu performs worse for byte miss ratio—Trace1, Trace2, and Trace3—have a high

proportion of objects accessed only once. RIPQ handles these traces well because the SLRU variants
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Figure 4.6: Breakdown of bytes written by type for a selection of configurations in Nabu and RIPQ,
for the warmed-up Trace5 trace. Nabu’s thresh increases from left to right, while RIPQ’s θ decreases
from left to right. The height of each bar is the total write volume, normalized to the minimum
RIPQ write volume for these configurations. Byte miss ratios for each run are shown above each
bar. Compulsory misses (labeled “new”) are object bytes written to the cache for the first time.
Reinsertion write volume (“reinsert”) indicates objects evicted and then reinserted. Copy-forward
write volume (“copyfwd”) indicates objects copied forward during capacity reclaim. Nabu achieves
lower total write volume than RIPQ at the same miss ratio on this trace by keeping copy-forward
write volume low. Overall, copy-forward write volume is a significant contributor to write volume
for both frameworks and accounts for the biggest difference in write volume across configurations.

are designed to clear single-access objects from the cache quickly. Nabu’s performance in byte miss

ratio might be improved with strategies to emulate SLRU’s behavior.

4.5 Write volume is influenced by copy-forward write volume

and misses

Figure 4.6 shows the contributions of three types of writes to the total write volume of Nabu and

RIPQ for selected configurations of Trace5. Nabu configurations are shown with increasingly strict

thresh (score thresholds) from left to right, while RIPQ configurations are shown with decreasing

θ (more restricted copy-forward) from left to right (Section 4.1). The height of each bar shows

the total write volume for that run; absolute byte miss ratios are shown above each bar. Writes

from new insertions (labeled “new”), i.e., the first time an object is seen by the cache, are shown

in purple. New writes are the same for a given trace regardless of the framework, parameters, or

cache size. Reinsertion write volume, or writes from missed objects reinserted into the cache, are in

teal (labeled “reinsert”). Finally, bytes copied forward, i.e., copy-forward write volume, are shown
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in blue (labeled “copyfwd”).

This plot shows the impact of Nabu’s thresh and RIPQ’s θ on total write volume. The reinsertion

write volume varies little across configurations because the differences in byte miss ratio are relatively

small; the minimum byte miss ratio in the plot is only around 5% lower than the maximum. Write

amplification varies more dramatically. Though a more permissive thresh or θ increases miss ratios

(in this case byte miss ratio), the higher copy-forward write volume can exceed the write volume

reduction from reinsertion write volume because more objects get copied forward. The plot shows an

instance of the two frameworks having approximately the same byte miss ratio, 9.6%. In this case,

Nabu achieves around 30% lower total write volume due to its low copy-forward write volume. For

other bar pairs with similar write volumes, e.g., Nabu’s 9.43% bar and RIPQ’s 9.86% bar, Nabu’s

lower reinsertion write volume (from lower miss ratios) is cancelled out by a higher copy-forward write

volume, showing how complex factors contribute to the central miss ratio/write volume tradeoff.

Comparing across Nabu configurations, the plot shows how some copy-forward write volume can

be traded off for a lower miss ratio, but there are diminishing returns as objects compete for cache

space as thresh increases. For instance, from Nabu’s third to second bars (9.63% and 9.43% byte

miss ratio, respectively), the miss ratio declines by 2% because thresh decreases, keeping objects

in the cache longer. Write volume increases by 7% as thresh decreases, since more objects are

being copied forward. However, from the second to the first bar (9.43% and 9.38% byte miss ratio,

respectively), the miss ratio declines by only 0.5%. Write volume increases by 12% due to copy-

forward write volume as the cache copies more objects forward. Though reinsertion write volume

dominates the write volume for this trace, the significant contribution of copy-forward write volume

to the total write volume indicates that reducing copy-forwards is a promising way to improve Nabu’s

device endurance impact further.

4.6 Sensitivity Analysis

Nabu’s performance is influenced by the parameters outlined in Section 4.1.1 and Figure 4.1. Nabu’s

parameters can be tuned to find the best settings for a given environment and workload, given

the system’s priorities (i.e., low miss ratio or low write volume). Tuning parameters for a given

service can be done in a trace-driven manner, where Nabu’s performance with different parameter

settings is evaluated on a recent trace and the production parameters are adjusted to reflect the

best performance [24]. This process would be repeated periodically to ensure Nabu’s parameters are

compatible with current workload patterns.
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(a) Lifetime cap impact on write volume (b) Lifetime cap impact on copy-forward write volume

Figure 4.7: Byte miss ratio and copy-forward write volume sensitivity to the lifetime cap, lcap, for
Trace5. Axes show the percent difference from the lowest value for that metric, with the miss ratio
difference on a log scale. Each line corresponds to a lifetime setting expressed in timesteps (where M
is millions). Each point on the line corresponds to a different score threshold, with scores becoming
more strict moving from left to right. Setting lcap correctly for a trace (here, 10M timesteps) is
important for both low miss ratio and low write volume.

Figures 4.7, 4.8, 4.9, 4.10 and 4.11 show how the score threshold, lifetime cap, ϕ, open container

count, copy-forward filter, and the size penalty influence byte miss ratio, write volume, and copy-

forward write volume. All results except for Figure 4.8 are for Trace5. Objects in this trace are all

the same size, so byte and object miss ratios are equivalent. The size penalty parameter (Figure 4.8)

depends on object size, so we show sensitivity to it using Trace1.

The lines in each plot use the same configuration except the parameter of interest is varied.

The default parameters correspond to a configuration at or near the Pareto frontier of Nabu’s

performance for the given trace. Each line is generated by varying the score threshold, thresh

(becoming stricter/higher from left to right). Write volumes and miss ratios are shown as a percent

difference over the lowest value for each metric, with miss ratios on a log scale to amplify differences

among the parameters.

The analysis shows that Nabu’s performance is particularly sensitive to the lifetime cap, lcap,

and the score threshold, thresh. The size penalty, szmod, allows Nabu to tune performance along

a spectrum optimizing for byte miss ratio and lower write volume at one end and object miss ratio

at the other end. Other parameters enable a system using Nabu to further optimize performance,

but Nabu is not very sensitive to different values.

4.6.1 Sensitivity to lifetime cap, lcap

Figure 4.7 shows how Nabu’s performance changes as the lifetime cap and score threshold change

for Trace5. The lifetime cap, lcap, is an expiry function parameter that limits the maximum
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expiration time an object can be assigned at the current time (Section 4.1.1). This cap drives the

minimum achievable miss ratio by influencing how long objects stay in the cache. However, it is

trace-dependent; for this trace, the best results were with lcap set to 10M timesteps, because the

trace has relatively short request interarrival times. If lcap is too small, e.g., at 1M in Figure 4.7,

the cache cannot keep useful objects in the cache long enough for those objects to get hit. The high

write volume at that lcap compared to the other values is a result of the increased reinsertion write

volume from the high byte miss ratio (Figure 4.7a).

On the other hand, as lcap is increased beyond its best setting of 10M, the minimum achievable

miss ratio increases as longer-lived objects compete more for cache capacity, forcing container era-

sures to occur more frequently. Many objects are also long-lived at this setting, resulting in excessive

copy-forwards (Figure 4.7b).

4.6.2 Sensitivity to score threshold, thresh

The score threshold, thresh, is shown by individual points on each line in this section’s plots (i.e.,

Figures 4.7, 4.8, 4.9, 4.10 and 4.11). thresh is an expiry function parameter: it controls how

expiration times are calculated by setting the score threshold below which an object is considered

low-value enough to evict. thresh controls where Nabu performs in the miss ratio/write volume

tradeoff (Section 4.1.1). As Figure 4.7 shows, changing thresh can result in a miss ratio decrease of

up to 6% along the tradeoff frontier (i.e., for lcap = 10M). On the other hand, it results in an increase

in write volume of over 25% between the lowest achievable write volume and the write volume at

the lowest miss ratio (Figure 4.7a). At the highest thresh (rightmost points), copy-forward write

volume is 1×, since nothing is being copied forward (see, e.g., Figure 4.7b). However, the high byte

miss ratios induce reinsertion write volume, exceeding the benefit of low copy-forward write volume

(Figure 4.7a). Write volumes decline as lower score thresholds contribute to better miss ratios, until

excessive writes due to copy-forward write volume cause total write volume to increase again.

4.6.3 Sensitivity to size penalty, szmod

The size penalty, szmod, is an expiry function parameter. It controls the contribution of size to

an object’s expiration time. In doing so, it allows tunability along the spectrum of optimizing for

byte miss ratio and write volume versus optimizing for object miss ratio (Section 4.1.1). Figure 4.8a

shows that Nabu achieves the best byte miss ratio and write volume for this trace when size is

fully discounted when computing an object’s expiration time, i.e., when szmod is set to 0. On the
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(a) Size modifier impact on byte miss ratio and write
volume

(b) Size modifier impact on object miss ratio and write
volume

Figure 4.8: Byte and object miss ratio vs. write volume sensitivity to the size penalty, szmod, in
the Trace1 trace, which has variable-size objects. Axes show the percent difference from the lowest
value for that metric; both axes are shown on a log scale. Each point on the line corresponds to
a different score threshold, with scores becoming more strict moving from left to right. The szmod

parameter tunes performance along a spectrum of optimizing for byte miss ratio and write volume,
versus optimizing for object miss ratio.

other hand, Figure 4.8b shows that the object miss ratio is best when size is heavily weighted in

the expiration time calculation, i.e., when szmod is set to 0.9 or 1. Because setting szmod to a high

value achieves a worse byte miss ratio, this results in a higher overall write volume. Specifically, by

setting szmod to 1, Nabu achieves up to a 27% decrease in minimum object miss ratio compared to

when szmod = 0. However, that configuration supports a minimum write volume 30% higher than

when szmod = 0.

This parameter is useful when a system using Nabu is targeting a specific write volume and

wants to optimize for object miss ratio, or vice versa. For instance, say a system is targeting write

volume at +1% bytes written over the minimum. With szmod = 0 (i.e., a size-unaware expiration

time function), Nabu can only achieve an object miss ratio 35% higher than the minimum Nabu is

capable of (Figure 4.8b). With szmod = 1 (i.e., a size-aware expiration time function), Nabu cannot

achieve the target write volume. However, with szmod = 0.5, Nabu hits the target write volume

with an object miss ratio only 10% higher than Nabu’s minimum.

4.6.4 Sensitivity to ϕ

ϕ is a grouping policy parameter controlling when a new container is opened (Section 3.3). Figure 4.9

shows the effect of a larger ϕ: with ϕ = 1M, the grouping policy is less aggressive about opening

containers for objects with widely varying expiration times. The less effective groupings lead to

higher copy-forward write volume (Figure 4.9b). There is also a downstream effect of making it
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(a) ϕ impact on write volume (b) ϕ impact on copy-forward write volume

Figure 4.9: Byte miss ratio and copy-forward write volume sensitivity to ϕ in the Trace5 trace. Axes
show the percent difference from the lowest value for that metric, with the miss ratio difference on
a log scale. Each line corresponds to a setting of ϕ expressed in timesteps. Each point on the line
corresponds to a different score threshold, with scores becoming more strict moving from left to right.
Setting ϕ too high causes the grouping policy initialize new clusters too conservatively, leading to high
copy-forward write volume as objects with widely-varying expiration times are grouped together.

more difficult to effectively choose a container to erase, since highly-varying expiration times result

in extremely heterogeneous containers. In particular, it is less likely to find a container with mostly

expired objects, so it is harder to find a container to erase that clearly makes a good tradeoff between

clearing low-value objects and keeping copy-forward write volume low.

Nabu’s miss ratio is not very sensitive to different values of ϕ for this trace; the miss ratio

difference between the worst and best settings, ϕ = 1M and ϕ = 10K, respectively, is less than

1% despite the ϕ values spanning two orders of magnitude (Figure 4.9a). On the other hand, as

expected, the write volume difference can be more extreme: comparing the write volume at ϕ = 1M’s

lowest miss ratio to the write volume at ϕ = 10K for the same miss ratio, ϕ = 1M does 22% more

writes than the better configuration.

4.6.5 Sensitivity to open container count, k

Like ϕ, the open container count, k, is a grouping policy parameter (Section 3.3). It influences

performance in two ways. First, more open containers may support lower copy-forward write volume

as the grouping policy can more effectively group objects with similar expiration times. Figure 4.10b

supports this: with k = 1, copy-forward write volume increases at a much faster rate than other

configurations. Setting k too small has a similar effect, and for similar reasons, as having ϕ set too

high (Section 4.6.4).

Other values of k support lower copy-forward write volume with a more gradual increase as

the score threshold increases. Second, with a larger k, the amount of device capacity allocated for
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(a) Open container impact on write volume
(b) Open container impact on copy-forward write vol-
ume

Figure 4.10: Byte miss ratio and copy-forward write volume sensitivity to the open container count,
k, in the Trace5 trace. Axes show the percent difference from the lowest value for that metric,
with the miss ratio difference on a log scale. Each line corresponds to a different setting of k. Each
point on the line corresponds to a different score threshold, with scores becoming more strict moving
from left to right. Having too few open containers leads to high copy-forward write volume because
objects are grouped together regardless of expiration time. Additional open containers allow better
separation of objects with different expiration times, supporting lower copy-forward write volume,
but Nabu is not very sensitive to different settings of k > 2 for this trace.

scratch space increases (Section 4.1.1). As such, once there are enough open containers for grouping

with low copy-forward write volume, additional open containers may slightly hurt performance since

there is less capacity available for caching. For instance, in this trace, k = 4 best balances these

factors, but the difference from other settings of k > 2 in write volume and miss ratio is negligible

(Figure 4.10a).

4.6.6 Sensitivity to copy-forward filter, cffilter

The copy-forward filter, cffilter, is a copy-forward policy parameter. It sets a configurable thresh-

old on what gets copied forward when a container is erased (Section 3.5). Here, we express cffilter

as a percentage of lcap. Intuitively, any object that has less remaining lifetime than this value is

evicted. Filtering copy-forwards can significantly influence write volume (Figure 4.11a). On one

hand, it can reduce copy-forward write volume, but on the other it may increase reinsertion write

volume. Comparing the 0% setting with the 1% setting, filtering some copy-forwards reduces copy-

forward write volume (and hence write volume) as the score thresholds increase (Figure 4.11b).

However, the effect on miss ratio of further increasing the filter value is significant, since copy-

forward filtering can often result in evicting valuable objects that must be re-inserted later.
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(a) Copy-forward filter impact on write volume
(b) Copy-forward filter impact on copy-forward write
volume

Figure 4.11: Byte miss ratio and copy-forward write volume sensitivity to the cffilter in the
Trace5 trace. Axes show the percent difference from the lowest value for that metric, with the miss
ratio difference on a log scale. Each line corresponds to a different filter setting, expressed as a
percentage of lcap. Each point on the line corresponds to a different score threshold, with scores
becoming more strict moving from left to right. Filtering copy-forwards can reduce write volume,
but often at the expense of higher miss ratios.

4.7 Takeaways

In terms of cache performance and endurance, Nabu is usually the better choice compared to RIPQ:

for a given miss ratio, Nabu’s endurance impact on the SSD is typically lower than RIPQ’s. In

practice, Nabu’s lower write volume means that Nabu can support a longer device lifespan for

cheaper devices with lower endurance budgets, e.g., SSDs with multi-level cells (MLC, TLC, etc.).

Lower object miss ratios mean Nabu could support more efficient systems with better user-visible

performance. For instance, in a CDN, Nabu’s lower object miss ratios would translate to lower

user-experienced latencies, because fewer requests need to be retrieved from distant datacenters. In

a storge tier, lower object miss ratios would translate to proportionally fewer hard disk accesses on

storage servers. Since hard disks are typically access-rate-bound (i.e., IOPS-bound) [50], fewer disk

accesses may mean fewer disks are needed to serve the same workload.

However, Nabu could be strengthened by improving the tradeoff achieves between byte miss

ratio and write volume (Section 4.4). Nabu could also potentially lower its total write volume in all

settings by more aggressively targeting copy-forward write volume, which can contribute significantly

to total write volume especially at lower miss ratios (Section 4.5).
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Chapter 5

Related Work

5.1 Flash translation and abstraction layers

The flash translation layer (FTL) is firmware in an SSD’s controller that manages the device’s

physical flash. It carries out tasks like ensuring that erase blocks accumulate wear evenly and that

bad blocks are not used for storing data, as well as translating logical addresses to physical addresses.

In conventional SSDs, it exposes the familiar block interface to the host; in Zoned Namespaces SSDs,

it exposes the zoned interface [10, 27, 64]. FTLs implement two of the three policies that flash caches

do: object grouping (where objects are flash pages) and container erasure selection (where a container

is a flash erase block). Unlike in flash caches, the FTL cannot modify the copy-forward policy: all

valid flash pages must be copied forward to preserve the stored data. FTLs are not designed to

handle data that can be arbitrarily erased as in a flash cache, so they cannot manage the tradeoff

between miss ratios and endurance. However, many of the ideas in FTL design are applicable to the

flash caching setting.

Flash abstraction layers are host-side software that interact with the SSD on behalf of applica-

tions. Flash-specific storage systems like file systems and key-value stores, as well as flash caching

frameworks, are special cases of flash abstraction layers. Flash abstraction layers often handle ob-

ject grouping and container erasure selection, since the flash abstraction layer may have access to

application information that improves the effectiveness of these policies for reducing write ampli-

fication. Like FTLs, flash abstraction layers that implement storage systems cannot modify the

copy-forward policy, since they have to preserve application data. A flash abstraction layer typically

issues large, contiguous writes to the SSD to avoid write amplification at the device level. It may
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alternatively leverage SSD streams [56] or Zoned Namespaces FTLs to control how data is written

to the device [9, 10, 53, 66, 73].

Grouping data together on flash by estimating similarities in invalidation time is a key technique

for reducing write amplification in SSDs [9, 15, 18, 19, 27, 36, 37, 39, 47, 53, 59, 70, 72, 73]. While

many FTLs and flash abstraction layers use data write frequency or other features as a proxy for

estimated invalidation time, some directly predict data invalidation time [15, 70, 72]. Predicting

invalidation time is analogous to Nabu’s assigning a expiration time to each object, and grouping

objects by their expiration times. In fact, expiration times are a prediction of when a näıve caching

algorithm implementation would invalidate (i.e., evict) an object. However, unlike with FTLs and

generic storage systems, Nabu ultimately decides when an object gets erased (evicted), giving it an

additional lever of control over write amplification.

5.1.1 Grouping data on flash

Several systems uses streaming k-means clustering to group pages into erase blocks [36, 72, 78].

Streaming k-means clustering groups one item at a time into one of k clusters. Each cluster has a

centroid which is the average of all items, and the algorithm places an item into the cluster whose

centroid the item is closest to (by some distance measure). In the flash caching setting, deciding

when to initialize a container (i.e., start a new cluster) based on this algorithm is difficult: a cluster

centroid does not correspond to any actual items, and the average may be a poor representation of a

cluster’s contents. This property made it difficult to strike the right balance between conservatively

and proactively initializing new containers (Section 3.3). The algorithm defined in Csirik et al.

uses actual items to define a cluster’s bounds. Nabu bases its clustering strategy on this algorithm

because it gives Nabu more control over when new containers are initialized [21] (Figure 8.2).

Chakraborttii and Litz group flash pages by predicted invalidation times [15]. Because predicted

invalidation times show the same time-varying nature as expiration times (i.e., they drift into the

past over time), their design sends all pages to a group whose pages’ invalidation times are in the

past to fill that group quickly. This strategy is similar to Nabu’s strategy of adjusting the function

to compute the distance between an object and a cluster to quickly fill containers whose bounds

have drifted into the past (Section 3.3). Nabu integrates this strategy into an online clustering

algorithm, while Chakraborrtii and Litz’s design relies on distributions of page invalidation times.

Clustering algorithms react faster to workload changes and require less tracking metadata than

distribution-based approaches to grouping because they do not rely on historical workload patterns.

41



5.1.2 Using cost/benefit analysis for container erasure

Many FTLs and flash-based storage applications do a cost/benefit analysis to select a container

(i.e., erase block, segment, or contiguous region of data) to erase [18, 19, 35, 37, 38, 47, 48]. The

cost/benefit technique was first proposed for selecting a log segment to clean in log-structured

filesystems [55]. For an FTL or storage application, the cost/benefit analysis generally tries to avoid

erasing containers that will not free up much capacity (equivalently, which will generate a lot of

write amplification), as well as containers with valid objects likely to be invalidated in the near

future. In Nabu, the cost/benefit analysis also accounts for write amplification, but it balances this

cost with the benefit of erasing containers with older expired objects, since such objects are unlikely

to contribute to hits.

Nabu reduces the cost of container erasures by maintaining a ranking of containers by erasure

benefit. This ranking is reused for a fixed number of container erasures before being refreshed by

re-running and re-ranking containers (Section 3.4). This approach is similar to one used in Nagel et

al. to reduce the overhead of garbage collection in FTLs [48].

5.2 Flash caching frameworks

Flash caching frameworks handle caching on flash on behalf of applications. RIPQ [66] and Pan-

nier [41] are the flash caching frameworks closest to the goals and target environments of Nabu.

Like Nabu, RIPQ and Pannier directly address the tradeoff between endurance and miss ratios for

objects written to the device; they are agnostic to admission filtering or higher-level caches.

5.2.1 RIPQ

RIPQ is the state-of-the-art flash caching framework [66]. RIPQ’s grouping, container erasure,

and copy-forward policies are designed to approximate a priority queue. RIPQ supports caching

algorithms that can be implemented with priority queues, such as GDSF [17] and SLRU [34]. On

insertion, each object is assigned a relative priority based on its score. Objects are grouped at

insertion time into open containers by this priority. The priority queue is divided into a small

number of segments, and each open container is at the head of one queue segment. Each open

container represents an insertion point into the priority queue. When an object is reaccessed, its

new score is translated to a priority. The new priority is marked by pointing the object to a “virtual”

placeholder container. The object will be physically moved when its container is erased.
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RIPQ orders containers by their position in the priority queue. RIPQ’s container erasure policy

erases the tail container in the queue to reclaim capacity. Any object that points to a virtual

container (i.e., was accessed since insertion) is copied forward into the open container at the head

of its virtual container’s queue segment.

RIPQ groups objects by their scores, translated to relative priorities [66]. However, unlike

expiration times, scores on their own are only useful for ranking objects relative to one another

to identify the worst object in the cache (Section 3.2.1). They cannot be used in a straightforward

manner to determine whether an object can be evicted. Using scores thus poses challenges for

erasing containers when the worst object in the cache (by score) is located in a container that would

generate high write amplification if erased.

Our simulations showed that, when RIPQ chooses a different container to erase than the worst one

in the cache to avoid excessive write amplification [80], miss ratios suffer. RIPQ orders containers by

the relative scores of their contents. The tail container in this ordering contains the lowest-scoring

objects and, under RIPQ’s default configuration, it is the next container to erase [66]. RIPQ’s

production configuration may skip tail containers that would generate excessive copy-forward write

volume if they were erased at that time [80]. Such containers get promoted to the head of the

container queue and the next tail container is evaluated for erasure.

This strategy is problematic for a couple of reasons. First, because RIPQ values objects relative

to one another, there is no straightforward way to identify objects in the new tail container that

should be kept in the cache. RIPQ only copies forward objects that have been accessed recently.

This problem is especially dire when many tail containers must be skipped to find a suitable erasure

candidate, because useful objects may not have had the opportunity to get hit. Second, RIPQ does

not explicitly track object scores unless an object has been accessed [66]. For all other objects,

its score is that of its container. When a container is skipped and promoted, every object in the

container gets promoted. Low-value objects may thus be kept longer than they should, increasing

competition for cache capacity for new and higher-value objects.

At the same time, we observed that this optimization can reduce RIPQ’s write volume, showing

the value of leveraging object-level information—in this case, an explicit accounting of the reinsertion

write volume generated by erasing a container—when making container erasure decisions. It also

highlights how flexibility in container erasure decisions can improve system performance. Nabu uses

this insight as a central design principle of its container erasure policy, rather than an optimization,

leading to lower overall endurance impact without sacrificing miss ratios compared to RIPQ.
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5.2.2 Pannier

Pannier’s driving design principle is to proactively remove cold objects (i.e., those without re-

cent/frequent accesses) and invalid objects (i.e., deleted or updated objects) [41]. In addition to

hot and cold queues of containers, Pannier maintains a third “survival queue” of all containers or-

dered by an elastic notion of age they call survival time. A container’s survival time increases when

an object in the container is accessed, and decreases when an object is invalidated. Pannier’s con-

tainer erasure policy first checks whether the survival queue’s top container has run out its survival

time clock. If so, that container is erased. Otherwise the tail container in the cold queue is erased.

In both cases, any objects with enough accesses are copied forward into either the hot or cold queues.

Pannier’s container erasure policy only broadly incorporates per-object information by adjusting

the survival time according to object accesses. It does not directly account for write amplification

or miss ratios when choosing a container. Nabu, on the other hand, directly targets the miss

ratio/endurance tradeoff in its container erasure policy’s cost/benefit analysis. Furthermore, Pannier

does not account for object sizes when assigning value to objects. As such, it is likely to perform

poorly for workloads where objects vary in size and object miss ratio is important, a common scenario

in web service workloads.

However, Pannier is designed to handle workloads where objects get updated and deleted, which

neither Nabu nor RIPQ are designed to handle. We suspect that Nabu’s use of expiration times

and its container erasure policy that explicitly accounts for object-level information will make it

straightforward to handle object updates and deletions. It is an interesting avenue for future work

that could broaden the use cases of Nabu (Section 6.1).

5.2.3 Other flash caching frameworks

Flashtier implements an erase block selection policy that considers the valid page count of each

container [58]. Flashtier erases the entire block, i.e., its copy-forward policy is to copy forward

nothing. Unlike Nabu, Flashtier does not account for object value when selecting a block, leading

to potentially high-value objects being erased.

Many other flash caching frameworks use techniques which are orthogonal and potentially com-

plementary to Nabu. Admission filtering preserves endurance by reducing writes to flash [5, 23, 29,

32, 52, 81]. Deduplication and compression reduce flash writes by reducing the capacity needed to

store objects [40, 43, 58]. These systems could benefit from careful management of object grouping,

container erasure, and copy-forward provided by Nabu. Kangaroo [45] targets caching very small
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objects on flash. Kangaroo and Nabu are complementary.

Grouping by eviction time in the offline setting Cheng et al. design an offline algorithm

that establishes a lower bound on the write volume of caching workload on flash for a given miss

ratio [16]. This work has a similar aim as Belady’s offline MIN algorithm, which finds the optimal

miss ratio for workloads with same-size objects [4].

The algorithm works by finding the time at which Belady’s MIN would evict each object, then

implements admission, grouping, container erasure, and copy-forward policies that use this informa-

tion to keep write amplification low. One way it reduces write volume is by using object eviction

times to group objects into containers, similar to how Nabu uses expiration times for grouping. How-

ever, its grouping policy fills a write buffer with objects, then sorts the objects and flushes them to

flash in container-sized chunks when the buffer is full. Nabu instead uses clustering to immediately

assign an object to a container; this strategy avoids the overhead of sorting objects and re-buffering

them according to expiration time. Nabu’s grouping policy also requires no DRAM buffering on

devices where the host can control data placement, e.g., ZNS SSDs [10].

Cheng et al.’s algorithm is offline. It is thus able to find the true eviction time of each object for

an optimal caching algorithm. These strategies are impossible in the online setting; Nabu currently

predicts the earliest possible eviction time for algorithms which are known to have good performance

in practice.

5.3 Time-to-live and grouping-based caching

5.3.1 TTL-based caching

Time-to-live (TTL)-based caching is commonly used to control data staleness, e.g., in web caches

and DNS [2, 20, 33, 67, 76]. Objects are assigned TTLs when they are retrieved from their backing

store. If the object’s TTL has passed when the object is requested from the cache, it is considered

a miss and the most up-to-date version of the object is retrieved from the backing store. TTLs

are similar to expiration times in that an object can be evicted when its TTL has expired. Unlike

TTLs used for controlling data staleness, Nabu’s expiration times are predictions of when a caching

algorithm would evict the object, and hence are better tailored to achieving low miss ratios.

TTLs are also often used for modeling simple caching algorithms like LRU and FIFO [7, 25].

Cached objects are assigned TTLs, which in the case of LRU may be extended when an object is hit.

An object can be evicted from the cache when its TTL expires. This approach is similar to predicting
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earliest possible eviction times for new and cached objects in Nabu. In this dissertation, we identify

the concept of earliest possible eviction times as useful inputs to the cache management strategies

implemented by flash caching frameworks. We additionally identify a method for computing earliest

possible eviction times for more sophisticated algorithms that incorporate hit counts and object sizes

(Section 3.2).

5.3.2 Grouping-based caching

Making caching decisions over groups of objects instead of individual objects, i.e., analogous to

container erasure policies, has been studied in the in-memory caching setting [75, 77]. Similar to

Nabu, GL-Cache [75] does a cost/benefit analysis to find the best group of objects to erase from a

miss ratio perspective. Unlike GL-Cache, Nabu’s container erasure policy explicitly accounts for the

impact on write volume in its cost/benefit analysis. GL-Cache’s in-memory setting means the cost

of keeping objects from erased groups is lower, compared to copying objects forward in the flash

setting. Thus, GL-Cache keeps a fixed fraction of objects from each container, while Nabu keeps

only those objects that have not expired. For a similar reason, Nabu groups objects into containers

based on objects’ earliest possible eviction times, whereas GL-Cache groups objects by insertion

time. Nabu’s more nuanced grouping and copy-forward policies keep write volume low to avoid

impacting device endurance.
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Chapter 6

Future work

Two avenues for future work are particularly compelling. One is exploring Nabu’s ability to support

object deletions and updates. Another is exploring how Nabu, and flash caching frameworks more

generically, could leverage learning for better flash caching.

6.1 Supporting object deletions and updates

Nabu’s current design supports read-only workloads (i.e., cached objects are immutable and the

application never explicitly issues a delete operation to the cache). This type of workload is common

in web services. For instance, media such as videos and photos are commonly stored as immutable

objects [50, 62, 66]. However, other important workloads such as filesystems and key-value stores

include object deletions and updates [13, 14, 51]. Updating or deleting an object at the application

layer means the cached version must be invalidated in the cache, since it will never be returned to

clients. Because of flash’s constraints, a deleted object cannot be immediately erased. Similarly,

an updated object cannot be overwritten in place; if it should be cached, it gets inserted as a new

object. Nabu would be more broadly useful if it could handle such workloads.

The challenge in handling updates/deletions is that invalidated objects (i.e., the original version

of the object that got updated/deleted) should be cleared from the cache as soon as possible. An

invalidated object takes up cache capacity, but unlike a low-value but still valid object, it will never

contribute to hits. However, invalidation adds an extra degree of unpredictability to cached objects’

behavior: while an object’s eviction time is later than its predicted earliest possible eviction time (in

the absence of copy-forward filtering), invalidation means an object may need to be erased before

the earliest possible eviction time.
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This problem could be attacked from a number of angles. One approach would make expira-

tion times invalidation-aware, so that updates/deletions could be supported with Nabu’s existing

cache management policies. This strategy might involve assigning objects an expiration time that

balances anticipated update/deletion times with earliest possible eviction times. Another approach

would augment the policies themselves to be invalidation-aware. That is, instead of combining antic-

ipated update/deletion times with earliest possible eviction times into a single value that is used in

place of expiration times, the framework could handle these concerns separately in Nabu’s policies.

For instance, the grouping policy could use two-dimensional clustering—or a different approach all

together—to group together objects which are most similar across both dimensions. This strat-

egy avoids having to decide how to combine the two concerns into a single value by which objects

are grouped. The container erasure policy could handle invalidated objects as distinct from valid

(expired or unexpired) objects. The container erasure policy’s cost/benefit analysis could then be

redesigned to consider invalidations separately from valid objects, e.g., by assigning a special benefit

to erasing invalidated objects.

These approaches rely on some method of predicting when objects will be invalidated. Predict-

ing invalidation times for flash pages or writes has been investigated to improve flash translation

layer and flash storage system designs [15, 70, 72] (Chapter 5). Other work estimates data up-

date frequency more coarsely (e.g., a few categories representing more- or less-frequently updated

data) [9, 18, 19, 36, 37, 39, 47, 53, 59, 73]. An important part of this work would involve looking

into these approaches to identify if any of them are appropriate for cache objects. In particular, it is

unclear if using predicted invalidation times is necessary in our setting, or if coarser representations

of data update frequency are enough.

6.2 Incorporating more learning into flash caching

Nabu supports algorithms where objects are assigned scores, and an object’s score decays in a

predictable way over time in the absence of accesses to that object (Section 3.2). Though such

algorithms are useful, novel algorithms are constantly being created to achieve lower miss ratios.

There are now a number of algorithms that use machine learning to achieve excellent miss ratios

for CDN workloads and other workloads of interest [6, 54, 62, 69, 74, 75]. An interesting avenue for

future work would look into using such algorithms in Nabu.

The main challenge is that it is not clear how to compute an earliest possible eviction time for

objects under these algorithms. For instance, LRB’s scoring function returns the predicted time
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of an object’s next read [62]. LeCaR and Cacheus track multiple algorithms’ performance on a

workload and make eviction decisions based on each algorithm’s track record on the workload to

date; the algorithm used to evict a given object is not known at insertion time [54, 69]. None

of these approaches outputs information at object insertion time that could be straightforwardly

converted to earliest possible eviction times. However, the excellent miss ratios of these algorithms

merit further investigation to adapt them to Nabu.

Using existing machine learning-based caching algorithms might help improve miss ratios in

Nabu. However, it would be worthwhile to investigate whether machine learning could help make

better decisions with regard to write volume, as well. For instance, could learning help make earliest

possible eviction time predictions that are more accurate, and would that accuracy help Nabu reduce

write volume and/or improve miss ratios? Could learning directly predict eviction times, and if so,

to what extent would that improve Nabu’s performance? Nabu uses clustering in its grouping policy

(Section 3.3). To what extent could a different learning-based strategy help make better grouping

decisions? How could learning be applied to container erasure or copy-forward decisions?

One possible source of insight is GL-Cache, a cache that uses machine learning to find the best

group of objects to evict, instead of the best individual object to evict [75]. By making predictions

about groups instead of individual objects, GL-Cache is more efficient and in some cases can achieve

lower miss ratios than caching algorithms that make predictions about individual objects. GL-

Cache’s group eviction policy does not account for write volume, as it was not designed for the

flash setting. Its policy for grouping objects also does not work in Nabu’s setting. It groups objects

by write time, which is equivalent in Nabu to using a single open container, a configuration that

worked poorly in our experiments (Section 4.6). However, GL-Cache uses learning to account for

an object’s potential future usefulness in its group selection strategy, while Nabu uses predicted

earliest possible eviction times. It would be interesting future work to compare GL-Cache’s learning

strategy to predicted earliest possible eviction times in the flash caching setting and determine how

best to combine it with write volume awareness.
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Chapter 7

Conclusion

Caches are crucial for resource efficiency and user-visible performance of web services. The large

working set sizes of modern web service workloads demand high-capacity caches to achieve low miss

ratios. Flash-based SSDs meet this need by providing sufficient performance and high capacity at

low cost. However, SSDs are hindered by their low endurance: the underlying flash wears out with

each write, eventually leading to the SSD’s failure. However, achieving low miss ratios involves

continually inserting new objects while keeping some useful objects in the cache, leading to high

write rates and often high write amplification. The goal of low miss ratios is thus in tension with

the goal of preserving SSD lifespan.

In this dissertation, we describe a novel method of caching objects on flash that leverages earliest

possible eviction times. Earliest eviction times are useful in the flash caching setting because they are

a basis for grouping objects that will be evicted together if they do not receive more hits, contributing

to low write amplification. Earliest eviction times support container erasure decisions that balance

the goals of low write amplification and low miss ratios. Finally, earliest possible eviction times

clearly express which objects can be evicted at a given time, and hence which objects are good

candidates for erasure. We provide a method for predicting earliest possible eviction times for a

useful class of caching algorithm.

This dissertation demonstrates the usefulness of earliest possible eviction times with Nabu, a flash

caching framework based on expiration times, or predicted earliest possible eviction times. Nabu

uses expiration times to support cache management decisions that achieve low miss ratios and low

write amplification. In particular, Nabu’s design includes a policy for erasing containers that runs a

cost/benefit analysis using expiration times as the input. Nabu selects the container to erase that best
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balances the benefit of erasing low-value objects with the cost of copying a container’s useful objects

forward. Because expiration times express an object’s value and evictability in absolute terms—i.e.,

without requiring expensive comparisons among objects—they support a container erasure policy

that can select any container in the cache to erase. Nabu also designs a novel clustering algorithm

for grouping objects into containers based on their expiration times. This grouping policy supports

low write amplification when containers are erased by making it more likely that most objects in a

container can be evicted at the same time.

Our evaluation of Nabu on five CDN traces shows that expiration times and Nabu’s cache

management policy designs push out the Pareto frontier of the object miss ratio and write volume

tradeoff. Nabu can achieve up to 20% fewer object misses than RIPQ for the same volume of flash

writes. When comparing performance at the same object miss ratios, Nabu does up to 30% fewer

flash writes than RIPQ. Nabu’s lower object miss ratios may translate to improved user-visible

performance as more requests are served from a cache than from slower backend storage, or lower

hard disk provisioning requirements as hard disks are shielded from excess load by a cache. With

this improved performance, Nabu’s lower write volume supports longer SSD lifespans or the ability

to use cheaper devices for the same SSD lifespan.

Nabu performs at or near the Pareto frontier of the byte miss ratio/write volume tradeoff. We

believe there is room for improvement in Nabu’s performance in byte miss ratio. In particular, we

observed that Nabu’s performance relative to RIPQ is worse for traces which have a high proportion

of single-access objects. We plan to further explore how Nabu could better handle such workloads.

This dissertation also outlines two avenues for future work. First, Nabu is currently designed for

read-only workloads, i.e., where objects are immutable. This is a common workload for web service

caches [50, 62, 66]. However, other important workloads like filesystem access workloads include

object deletions and updates [13, 14, 51]. Exploring how Nabu could support updates and deletions

in addition to reads, while maintaining low miss ratios and write volume, is interesting future work.

We also propose investigating how learning could be incorporated into Nabu. Predicting earliest

possible eviction times is challenging for learning-based algorithms, but such algorithms have shown

excellent miss ratio performance. Future work could look into how to support those algorithms in

Nabu. In general, the role of learning in making flash caching decisions merits further investigation.
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Chapter 8

Appendix

8.1 Grouping Policy Clustering Algorithm

Figures 8.1 and 8.2 give pseudocode for Nabu’s clustering algorithm. A description of the grouping

policy, including a high-level overview of this grouping algorithm, can be found in Section 3.3.
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Function Dist(c: Container, o: Object):
if o.expts ≥ c.lower bound and o.expts ≤ c.upper bound then

return 0;
else

if o.expts < c.lower bound then
δ ← c.lower bound− o.expts;

else
δ ← o.expts− c.upper bound;

end

end
if c.upper bound is in the past then

δ ← δ ÷ (event clock− c.upper bound);
end
return δ;

Figure 8.1: Function to compute an object’s distance to a cluster/container.
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Function GroupObject(o: Object):
c, update bounds← FindBestContainer(o);
c.AddObject(o, update bounds);

Function FindBestContainer(o: Object):
while true do

δmin ←∞;
cmin ← ∅;
for c : open containers do

δ ← Dist(c, o);
if c is uinitialized then

cfree ← c;
else

if δ < cmin then
δmin ← δ;
cmin ← c;
if δ = 0 then

break;
end

end

end

end
if δmin > ϕ and cfree ̸= ∅ then

cbest ← cfree;
update bounds← True;
break;

end
if o.size+ c.size > c.capacity then

close c, replace with free container;
else

cret ← cmin;
if δmin > phi then

update bounds← False;
else

update bounds← True;
end
break;

end

end
return cbest, update bounds;

Function Container::AddObject(o: Object, update bounds: Bool):
if update bounds then

this.upper bound← max(o.expts, this.upper bound);
this.lower bound← min(o.expts, this.lower bound);

end
... ; /* Additional bookkeeping */

Figure 8.2: Pseudocode for the grouping policy’s clustering algorithm, FindBestContainer, and the
parent function that calls it to group an object into a container, GroupObject. Dist is described in
Figure 8.1.
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8.2 Nabu and RIPQ performance relative to FIFO

Figures 8.4 and 8.5 show the performance of Nabu and RIPQ relative to FIFO. Section 8.2 shows

the absolute values used to compute the percent differences from RIPQ. These results demonstrate

that although FIFO does not incur any write amplification, it often has higher write volume at

much higher miss ratios than more sophisticated flash caching strategies. The high miss ratios cause

reinsertion write volume as the frequent misses are rewritten into the cache. Writes from reinsertion

write volume typically exceed the benefit of eliminating copy-forward write volume.

Trace WV (TiB) Object MR Byte MR
Trace1 76.6 20.8% 23.9%
Trace2 22.2 9.5% 7.9%
Trace3 37.0 10.9% 12.9%
Trace4 504.7 20.1% –
Trace5 219.4 11.2% –

Figure 8.3: Absolute values used to compute percent differences from FIFO minimums in Figures 8.4
and 8.5. WV is the write volume in terabytes; MR is miss ratio.

8.3 Nabu and RIPQ performance for 2TiB cache

Figures 8.7 and 8.8 show the performance of Nabu and RIPQ relative to FIFO. Section 8.3 shows

the absolute values used to compute the percent differences from RIPQ. This section shows results

for Nabu and RIPQ for a 2TiB cache. The results show that the conclusions made for a 1TiB cache

still hold, though RIPQ achieves relatively better performance compared to RIPQ for experiments

optimizing byte miss ratio as compared to the 1TiB cache.
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(a) Trace1 object miss ratio (b) Trace2 object miss ratio

(c) Trace3 object miss ratio

(d) Trace4 object miss ratio (e) Trace5 object miss ratio

Figure 8.4: Object miss ratio vs write volume for Nabu, RIPQ, and FIFO for a 1TiB cache (Nabu
and RIPQ results are identical to Figure 4.4). Results are shown as percent differences from FIFO.
The absolute values used to compute these differences are listed in Section 8.2. FIFO, a common
choice of caching algorithm for flash caches, performs poorly in miss ratio, causing it to also generate
high write volume despite copying no objects forward.
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(a) Trace1 byte miss ratio (b) Trace2 byte miss ratio

(c) Trace3 byte miss ratio

Figure 8.5: .
Byte miss ratio vs write volume Pareto frontier for Nabu, RIPQ, and FIFO for a 1TiB cache

(Nabu and RIPQ results are identical to Figure 4.4). For Trace4 and Trace5, byte and object miss
ratio are equivalent because all objects are the same size. Results are shown as percent differences
from FIFO. The absolute values used to compute these differences are listed in Section 8.2. FIFO,
a common choice of caching algorithm for flash caches, performs poorly in miss ratio, causing it to

also generate high write volume despite copying no objects forward.

Trace WV (TiB) Object MR Byte MR
Trace1 65.1 12.7% 18.2%
Trace2 19.1 6.9% 6.1%
Trace3 31.6 6.8% 9.9%
Trace4 412.9 15.3% –
Trace5 150.2 6.9 % –

Figure 8.6: Absolute values used to compute percent differences from RIPQ minimums in Figures 8.7
and 8.8. WV is the write volume in terabytes; MR is miss ratio.
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(a) Trace1 object miss ratio (b) Trace2 object miss ratio

(c) Trace3 object miss ratio

(d) Trace4 object miss ratio (e) Trace5 object miss ratio

Figure 8.7: Object miss ratio vs write volume for Nabu and RIPQ for a 2TiB cache. Results are
shown as percent differences from RIPQ. The absolute values used to compute these differences are
listed in Section 8.3. Nabu pushes out the Pareto frontier of the object miss ratio/write volume
tradeoff in five CDN workloads compared to RIPQ.
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(a) Trace1 byte miss ratio (b) Trace2 byte miss ratio

(c) Trace3 byte miss ratio

Figure 8.8: Byte miss ratio vs write volume Pareto frontier for Nabu and RIPQ for a 2TiB cache.
For Trace4 and Trace5, byte and object miss ratio are equivalent because all objects are the same
size. Results are shown as percent differences from RIPQ. The absolute values used to compute
these differences are listed in Section 8.3. Nabu performs comparably or slightly worse than RIPQ
in byte miss ratio on these traces, with nearly 2% higher minimum byte miss ratios than RIPQ.
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